Systematic Approach to Develop an Optimized Nozzle Design for Up to Date and Future Demands

Jan Glas, Klau Tweddle, Lutz Müller

Schottel
DUCTED PROPELLER

SYSTEMATIC APPROACH TO DEVELOP AN OPTIMIZED NOZZLE DESIGN FOR UP TO DATE AND FUTURE DEMANDS

Müller, Tweddell, Glas 10.10.2017
Content

01 Introduction

02 Nozzle Optimization
 Optimization Technique / Approach
 Market Study / Predesign
 Parameterization
 Design Process / Tools
 Model Tests

03 Results

04 Integrated Anode Concept
Content

01 Introduction

02 Nozzle Optimization
 Optimization Technique / Approach
 Market Study / Predesign
 Parameterization
 Design Process / Tools
 Model Tests

03 Results

04 Integrated Anode Concept
01 Introduction

>> Background

Principal use:

Nozzle used to increase thrust at low speed operation

Performance:

highly dependant on nozzle profile
New development, design objective:

High-Speed Optimized Nozzle

- **Main Operating Speed:** >10 kn
- **Goal:**
 - Efficient @ higher Speeds
 - High DP-Thrust

Compromise Design

New Development
Requirements for the new compromise duct:

- suitable for a wide range of various applications
- identical bollard pull as standard nozzle WAG19A-mod
- improved free running performance (fuel economy)
- minimized space for installation

...which nozzle design???
Content

01 Introduction

02 Nozzle Optimization
 Optimization Technique / Approach
 Market Study / Predesign
 Parameterization
 Design Process / Tools
 Model Tests

03 Results

04 Integrated Anode Concept
02 Nozzle Optimization
>> Optimization Technique

Optimization Technique

Traditional:
Modeltest, Experiments

Virtual Product Development:
Computer Simulations, „Virtual Experiments“

SCHOTTEL YOUR PROPULSION EXPERTS
02 Nozzle Optimization

>> Approach

Virtual Product Development:

Phase I: Suitable selection of nozzle geometries / parametrization
Phase II: Determine optimal nozzle design with computer simulations
Phase III: Verify optimized performance in model test
Phase VI: Check full scale performance
02 Nozzle Optimization

Nozzle >> Market-analysis >> Results

The diagram illustrates the optimization of nozzles across different market analyses, with results ranging from low-speed to high-speed conditions. It shows the performance of various nozzles in different speed ranges:

- Bollard Pull (0 kn)
- DP-Performance (0-2 kn)
- Towing (3-6 kn)
- Free Running (8-12 kn)
- Free Running (>12 kn)

The X-axis represents increasing shipspeed, while the Y-axis indicates the rank of the nozzles. The color gradient from low-speed to high-speed indicates the performance improvement of nozzles across different speeds.
Higher speed /Compromise optimized ducts

- moderate opening-angles, integrated cylindrical part for propeller, small diffusor
- L/D = 0.4 .. 0.45
- Propellerplane x/L = 0.55 .. 0.7
02 Nozzle Optimization

>> PreDesign Check - Model Based

- Performance check
 - Based on thrust load identity
 - Assessment of efficiency improvement

![Graph showing performance check results for Schottel Wag 19A mod and Predesign models.](image)
02 Nozzle Optimization
>> PHASE I

Virtual Product Development:

Phase I: Suitable selection of nozzle geometries / parametrization
Phase II: determine optimal nozzle design with computer simulations
Phase III: verify optimized performance in model test
Phase VI: check full scale performance
02 Nozzle Optimization

>> Parametrization

- Opening angle
- Radius Leading edge
- Inflow contour
- Diffusor geometry
02 Optimization-Workflow

>> Applied Tools

- Geometry Update
- CFD Calculation
- Optimizer

Optimization setup: Genetic algorithm
Input variables: 5 parameters
Design objective: Maximize BP- & FR-performance
02 Optimization-Workflow

>> Applied Tools

- Optimizer
 - DAKOTA

- Geometry-Update
 - dffMOD
 - geometry.stl

- Computational-Model
 - OpenFOAM

- Post-Processing
 - script (.sh)

- params.in
- results.out
02 Nozzle Optimization

>> Examined Designs

Examined Designs:

1. step:
- Inflow Optimization (150 designs)

2. step:
- Diffusor Optimization (79 designs)

Optimized Design:
- Maximized BP- & FR-performance
02 Nozzle Optimization

>> PHASE II

Virtual Product Development:

- **Market study**
- **Parameterization**

Phase I: Suitable selection of nozzle geometries / parametrization
Phase II: determine optimal nozzle design with computer simulations
Phase III: verify optimized performance in model test
Phase VI: check full scale performance
02 Nozzle Optimization
>> Modeltest

Modeltests with the optimized nozzle:
SVA-Potsdam

SRP 510 with optimized nozzle

Towing Tank
Content

01 Introduction

02 Nozzle Optimization
 Optimization Technique / Approach
 Market Study / Predesign
 Parameterization
 Design Process / Tools
 Model Tests

03 Results

04 Integrated Anode Concept
03 Results

>> Performance >> Open Water Test

SDV45 „SCHOTTTEL VarioDuct“
increased performance proofed in Open Water Tests

--- WAG19A-mod
--- SDV45

... identical bollard pull
and increased free sailing efficiency
03 Results
>> Performance >> Open Water Test

SDV45 „SCHOTTEL VarioDuct“
increased performance proofed in Open Water Tests

<table>
<thead>
<tr>
<th></th>
<th>Offshore Supply Vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Free-running-design, SRP430 FP, 1600kW, Dp=2.3m)</td>
</tr>
<tr>
<td>nozzle</td>
<td>WAG19A-mod</td>
</tr>
<tr>
<td>DP-thrust (1kn) [t]</td>
<td>47.1 (100%)</td>
</tr>
<tr>
<td>max. vessel speed [kn]</td>
<td>14.8 (100%)</td>
</tr>
<tr>
<td>power @ 14.8kn [kW]</td>
<td>1571 (100%)</td>
</tr>
</tbody>
</table>

... identical bollard pull

and increased free sailing efficiency
03 Results
>> Nozzle >> Performance

- **Bollard Pull (0 kn)**
- **DP - Performance (0-2 kn)**
- **Towing (3-6 kn)**
- **Free Running (8-12 kn)**
- **Free Running (>12 kn)**

RANK

Low-Speed

High-Speed

initial nozzle

optimized nozzle
03 Results
>> PHASE III

Virtual Product Development:

Phase I: Suitable selection of nozzle geometries / parametrization
Phase II: determine optimal nozzle design with computer simulations
Phase III: verify optimized performance in model test
Phase VI: check full scale performance
03 Results

>> SDV45

Bollard Pull Test: Harbout Tug - Geta Coast Guard

Speed Trial: Escort Tug - Dux
03 Results

>> PHASE IV

Virtual Product Development:

- Market study
- Parameterization

Phase I: Suitable selection of nozzle geometries / parametrization
Phase II: Determine optimal nozzle design with computer simulations
Phase III: Verify optimized performance in model test
Phase IV: Check full scale performance
03 Results
>> SDV45

SDV45 „SCHOTTEL VarioDuct“

...combines great bollard pull capacities
with excellent free sailing efficiency
at minimized installation space
Content

01 Introduction

02 Nozzle Optimization
 Optimization Technique / Approach
 Market Study / Predesign
 Parameterization
 Design Process / Tools
 Model Tests

03 Results

04 Integrated Anode Concept
04 Integrated Anode Concept

>> Invention

The real life …

… a picture is worth a thousand words
04 Integrated Anode Concept
>> Invention

The invention ...

Zn anode Al anode MG anode

Integrated concept Zn/Al/Mg

... a picture is worth a thousand words
04 Integrated Anode Concept
>> Hydrodynamic Comparison >> OWC

Efficiency loss [%] (relative to blank nozzle)

max speed
transit

Anodelayout: best worst

SRP150 (1.1m) SRP260 (1.75m) SRP360 (2.2m) SRP460 (2.7m) SRP630 (3.2m) integrated (blank) blank nozzle
04 Integrated Anode Concept

>> Advantages

- less thruster weight

- **increased hydrodynamic efficiency:** higher speed, less fuel consumption

- **reduced risk** of anode damage

- minimum installation space

- **increased protection time:** up to 5 years and more