Unique full-scale bollard pull test of large DP vessel newbuilding with six Azipod® CZ thrusters

Ole Jacob Irgens & Kimmo Kokkila
ABB OY
Azipod® Six Thruster Configuration
Accommodation / work barge – Bollard pull test analysis

Ole Jacob Irgens, VP Sales, Thruster products
Agenda

Introduction
CFD Analysis and Cavitation Tunnel Test
Bollard Pull Test in China
Bollard Pull Test Results and Reflections
Conclusions
Introduction
Introduction

Subject vessel is DP3 accommodation / work barge | The propulsion system

- 115.5m in length
- Breadth of 34m and depth of 9.1m. The maximum draft is 6.1m
- The vessel was built in China and will be delivered this year
- Hull shape is basic pram type

- Three thrusters in the stern/ bow respectively
- Side thrusters positioned ahead of center thruster
- Bollard pull requirement was 30 tons per thruster
The thruster selection

Specification called for a thruster with 1.8MW capacity to achieve the 30t bollard pull
The vessels has 6 thrusters, three in the bow and three in the stern
 • Side thrusters positioned ahead of center thrusters
ABB was selected based on performance predictions
Based on reference data it concluded there could be a 3-4% thrust loss for the side thrusters due to the configuration
As a result the power rating was increased to 1.9MW

AZIPOD® CZ980
 – Pushing podded thruster with a ducted propeller
 – PM motor
 – Prop dia. 2.4m
 – RPM is 301 at max power of 1.9MW
CFD Analysis and Cavitation Tunnel Test
CFD Analysis to Verify Thruster Selection

1.8MW was used for the CFD analysis

<table>
<thead>
<tr>
<th>CZ980 Thrusters at 1.8 MW</th>
<th>Thrust (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP condition pod thrust</td>
<td>33.4</td>
</tr>
<tr>
<td>Hull related thrust deduction at BP condition</td>
<td>0.96</td>
</tr>
<tr>
<td>Vessel BP w/ thrust deduction</td>
<td>32.5</td>
</tr>
</tbody>
</table>

Based on reference data

The corresponding BP thrust for side thrusters at 1.9MW would be ~ 34.5 tonnes.

With the hull related thrust deduction the thrust would then be ~ 33.4 tonnes.
CFD Analysis to Verify Thruster Selection

Impact of Ocean Current at 1.8MW Power

<table>
<thead>
<tr>
<th>Current direction</th>
<th>Current velocity (m/s)</th>
<th>Pod open water thrust (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the front</td>
<td>0.1</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>30.1</td>
</tr>
<tr>
<td>From the rear</td>
<td>0.1</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>37.6</td>
</tr>
<tr>
<td>Side</td>
<td>0.1</td>
<td>33.2</td>
</tr>
<tr>
<td>Opposite side</td>
<td>0.1</td>
<td>33</td>
</tr>
</tbody>
</table>
Cavitation Test for Nozzle Propeller

Thruster power of 1.9MW

Margin before thrust breakdown at max power (yellow line)
Bollard Pull Test in China
Sli d e 11

Bollard Pull Test Preparations

ABB recommendations based on ITS2002 Bullard Pull trial code
– Current, waves, water depth, water density
– Testing protocol, time and frequency
– Load cell arrangement and calibration
– Towing length
– Orientation of the vessel
Bollard Pull Test Conditions
COSCO Zhoushan Shipyard July 26th 2017

Measured bollard pull over 10 minutes for each test

4 tests completed as follows,

1) Centre pod in the bow (#5)
2) Side pods in the bow (#4,6)
3) Centre pod in the stern (#2)
4) Side pods in the stern (#1,3)
Bollard Pull Test Conditions

Ocean Currents

For Azipod® Thrusters 1-3 the towing line was attached to the stern.

For Azipod® Thrusters 4-6 the towing line was attached to the bow with the vessel backing out.
Bollard Pull Test Results and Reflections
Bollard Pull Test Results

Test 1 – Centre pod in the bow

<table>
<thead>
<tr>
<th>Pod</th>
<th>Static bollard pull (t)</th>
<th>Sustained bollard pull (t)</th>
<th>Average RPM</th>
<th>Current Average (kn)</th>
<th>Current direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod #5</td>
<td>34.7</td>
<td>31.6</td>
<td>305</td>
<td>0.6</td>
<td>Ahead/port side</td>
</tr>
</tbody>
</table>

- Vessel backing out with towing line fastened in the bow.
- Sustained BP of 31.6 tons and Static BP of 34.7 tons
 - Impact from varying head current ~ -1-1.5 tons.
- Higher RPM value due to the head current.
Bollard Pull Test Results

Test 2 – Side pods in the bow

<table>
<thead>
<tr>
<th>Pod</th>
<th>Static bollard pull (t)</th>
<th>Sustained bollard pull (t)</th>
<th>Average RPM</th>
<th>Current Average (kn)</th>
<th>Current direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod # 4/6</td>
<td>33.1</td>
<td>32.4</td>
<td>302/ 307</td>
<td>0.3</td>
<td>Ahead/port side</td>
</tr>
</tbody>
</table>

- Vessel backing out with towing line fastened in the bow.
- Sustained BP of 32.4 tons.
 - Impact from varying head current ~ -0.3-1 tons.
- Static BP of 33.1 tons.
- Higher RPM value due to head current
Bollard Pull Test Results

Test 3 – Center pod in the stern

<table>
<thead>
<tr>
<th>Pod</th>
<th>Static bollard pull (t)</th>
<th>Sustained bollard pull (t)</th>
<th>Average RPM</th>
<th>Current Average (kn)</th>
<th>Current direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod # 5</td>
<td>37.2</td>
<td>35.9</td>
<td>298</td>
<td>1.1</td>
<td>Stern/port side</td>
</tr>
</tbody>
</table>

- Vessel moving forward with towing line fastened in the stern.
- Sustained BP of 35.9 tons.
 - Impact from varying head current ~ +2-3 tons.
- Static BP of 37.2 tons
- Lower RPM value due to the current from behind.
Bollard Pull Test Results

Test 4 – Side pods in the stern

<table>
<thead>
<tr>
<th>Pod</th>
<th>Static bollard pull (t)</th>
<th>Sustained bollard pull (t)</th>
<th>Average RPM</th>
<th>Current Average (kn)</th>
<th>Current direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod # 1/3</td>
<td>34.1</td>
<td>31.7</td>
<td>302/ 299</td>
<td>0.9</td>
<td>Stern/port side</td>
</tr>
</tbody>
</table>

- Vessel moving forward with towing line fastened in the stern.
- Sustained BP of 31.7 tons.
 - Impact from varying head current ~ +1-1.5 tons.
 Misalignment of the vessel relative to the towing line led to a few low data points bringing down the average sustained BP figure.
- Static BP of 34.1 tons
Bollard Pull Test Reflections
Alignment Issues of the Vessel Respective of the Towing Line

Azipod® No 1 and 3

Bringing down the sustained BP value
Summary of Results with Thrust Deductions for Current Impact

<table>
<thead>
<tr>
<th>Pod #</th>
<th>Static bollard pull (t)</th>
<th>Current Impact (t)</th>
<th>Calibrated Static BP (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34.1</td>
<td>-2-2.5</td>
<td>~ 32.1</td>
</tr>
<tr>
<td>2</td>
<td>37.2</td>
<td>-2-2.5</td>
<td>~ 35.0</td>
</tr>
<tr>
<td>3</td>
<td>34.1</td>
<td>-2-2.5</td>
<td>~ 32.1</td>
</tr>
<tr>
<td>4</td>
<td>33.1</td>
<td>+0.1-0.5</td>
<td>~ 33.3</td>
</tr>
<tr>
<td>5</td>
<td>34.7</td>
<td>+0.5-1</td>
<td>~ 35.5</td>
</tr>
<tr>
<td>6</td>
<td>33.1</td>
<td>+0.1-0.5</td>
<td>~ 33.3</td>
</tr>
</tbody>
</table>
Conclusions
All thrusters met the Bollard Pull Requirement

- The current had an impact during the test
- Alignment issues of the vessel during parts of test #4 affected the sustained bollard pull values for Pods #1/3
- Calibrating the Static Bollard Pull results with the thrust deductions from the current gives a consistent picture
- It seems like the side thruster position had higher than expected impact on the thrust. The reduction was more in the order of 6%.
- Measured thrust from the bow thrusters was higher than the stern thrusters due to hull shape

<table>
<thead>
<tr>
<th>Thruster #</th>
<th>Static bollard pull (t)</th>
<th>Current Impact (t)</th>
<th>Calibrated Static BP (t)</th>
<th>BP Estimate from CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34.1</td>
<td>-2-2.5</td>
<td>~ 32.1</td>
<td>33.4</td>
</tr>
<tr>
<td>2</td>
<td>37.2</td>
<td>-2-2.5</td>
<td>~ 35.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34.1</td>
<td>-2-2.5</td>
<td>~ 32.1</td>
<td>33.4</td>
</tr>
<tr>
<td>4</td>
<td>33.1</td>
<td>+0.1-0.5</td>
<td>~ 33.3</td>
<td>33.4</td>
</tr>
<tr>
<td>5</td>
<td>34.7</td>
<td>+0.5-1</td>
<td>~ 35.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>33.1</td>
<td>+0.1-0.5</td>
<td>~ 33.3</td>
<td>33.4</td>
</tr>
</tbody>
</table>