Power Management Systems for Offshore Vessels

Lew Weingarth
Transocean

Scott Manson, Saurabh Shah and Kamal Garg
Schweitzer Engineering Laboratories, Kinc.

October 13-14, 2009
Power Management Systems for Offshore Vessels

Dynamic Positioning Conference

Lew Weingarth, *Transocean*

Importance of Power Plants

- Current rates for rigs > $500,000 / day
- Power plant reliability affects client cost and drilling contractor revenue
- Power plant failures create costlier downtime than DP faults
- Often twice as much time spent convincing everyone that power plant is fixed than is required to fix power plant
Typical DP Rig Power System

- State-of-the-art drilling rig costs
 - $400M to $900M USD
 - 2 years to build

- DP rig power plant configurations
 - Single / dual bus (6 thrusters)
 - Dual bus (8 / 17 thrusters)
 - 18 configurations in Transocean
 - Dozens of configurations in the industry
Example DP Rig Power System
Cost of DP Incidents

- High costs
 - Loss of revenue / reputation
 - Delayed production
 - Risk to personnel, equipment
 - Potential environmental impact
- Reduction of DP incidents – major focus
- Power plant faults – main cause
IMCA statistics for 2007 DP Incidents (reproduced courtesy of IMCA DP Station Keeping Incident Report 2007)
DP Power Plant Faults

- Individual equipment faults addressed with maintenance, procedures, and redundancy
- Common-mode faults often end in blackout (limited protection)
PMS for DP Power Plants

• Other industries have even higher downtime costs and an even higher focus on power plant reliability
• Sophisticated simulation reduces installation time
• Industrial grade equipment provides high reliability
PMS for DP Power Plants

- Industrial grade equipment built with MIL-SPEC components provides high reliability
- Detection of impending failure rather than detecting failure improves reliability
Proposed Solution

- Local protection
 - Protection and controls
 - Communication

- System protection
 - Protection and controls
 - Communication
 - Engineering station
Proposed Solution

- Common-mode faults
- Design verification
- Security
- Reliability
Proposed System

GPS Satellite

Satellite Clock

System Protection

POWERMAX®

HMI

RTAC

SVP

Status and Control

Relays

11 kV Bus A

Tie Breaker

11 kV Bus B

Local Protection
Local Protection Block

- Generator protection and control
 - Power – P & Q
 - Differential
 - Loss of excitation
 - Under- and overvoltage
 - Under- and overfrequency
- Synchrophasor data collection
System Protection Block

• Power management system
 ♦ Load dependent start / stop
 ♦ Generator control and order selection
 ♦ Blackout start / recovery

• Engineering diagnostics
 ♦ SOE / ER
 ♦ HMI
Communications Options

- Synchrophasors
- Protocols
 - DNP3 / Modbus®
 - IEC 61131
 - MIRRORED BITS® Communications
 - IEC 61850
- Fiber optics
Sequence of Events

<table>
<thead>
<tr>
<th>Time</th>
<th>Equipment</th>
<th>Description</th>
<th>State</th>
<th>Device</th>
<th>Element</th>
<th>Server</th>
<th>Substation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>51A POWER UP</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB2 LOCKOUT</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB3 LOCKOUT</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>UV TRIP</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>UF TRIP</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>51A RELAY ABNORMAL</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>DFDT ALARM</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>PH ANG ALARM</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>UV ALARM</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>UF ALARM</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>PH ANG BLOCK</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>DFDT BLOCK</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>51A LOCKOUT</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>51A ABNORMAL</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB2 TRIP1</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB2 TRIP2</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>11/14/2007 18:05:31.822</td>
<td>F5 TRIP1</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB3 TRIP1</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB3 TRIP2</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>F5 TRIP2</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>F4 TRIP2</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>11/14/2007 18:05:31.822</td>
<td>F4 TRIP2</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>F4 TRIP2</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>F4 TRIP2</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>SFI SOFT ALARM</td>
<td></td>
<td>ASSERT</td>
<td>SFI 451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>MIRRORED BITS ALARM</td>
<td></td>
<td>ASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>51A SOFT ALARM</td>
<td></td>
<td>DEASSERT</td>
<td>SEL451A</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB2 LOCKOUT</td>
<td></td>
<td>ASSERT</td>
<td>SEL451B</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>CB3 LOCKOUT</td>
<td></td>
<td>ASSERT</td>
<td>SEL451B</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
<tr>
<td>10/09/2007 08:05:31.822</td>
<td>UF TRIP</td>
<td></td>
<td>ASSERT</td>
<td>SEL451B</td>
<td></td>
<td>SEL2032</td>
<td>GIC</td>
</tr>
</tbody>
</table>

SER Viewer

ER Autoarchiving
Additional PMS Features

- Synchrophasors
- Flexible synchronizer
- Arc-flash protection
- Additional protection
 - Bus, transformer, and feeder
 - Cable and motor
Common-Mode Faults

- Fuel / actuator
- Governor
- Exciters
- Other faults

Frequency (Hz)

- 61.8 Hz No Load
- 60.9 Hz 50% Load
- 60.0 Hz 100% Load
- 60.0 Hz 50% Load

Load

- 0%
- 50%
- 100%

3% Droop
Relay + Arc-Flash Detection = Most Reliable and Economical Solution

Fault Current

Self-Testing Sensors

Bare Fiber Loop

Point Sensors

Point Sensors
Example Report: Arc-Flash Fault
Arc-Flash Mitigation Solution

Light Sensor

Current Input

Arc-Flash Protection
Arc-Flash Mitigation Solution

- Replace relays
- Revise coordination / protection
- Use proper PPE
- Install warning labels
Automation Controller (RTAC)

acSELerator® RTAC
- Offline configuration
- Device definition
- RTAC firmware manager
- Custom logic programming

Web Server
- Communications state
- System diagnostics
- User administration
- Network configuration
- Alarm panel
- SER reports
- Security logs
Engineering Access

DNP3, Modbus, SEL, Mirrored Bits, IEC 61850, Synchrophasors

SCADA

Relays
Present Application Data Visualization
Detect and Respond to Power Oscillations

- Amplitude = 32.71
 - Damping Ratio = 8.9%
 - Frequency = 0.263 Hz
- Amplitude = 16.74
 - Damping Ratio = -0.76%
 - Frequency = 0.258 Hz
- Amplitude = 42.02
 - Damping Ratio = -3.22%
 - Frequency = 0.232 Hz

Line Trip

System Separation

Damping Ratio < 10%

Negative Damping Ratio

Damping Ratio < -3%
Differential Protection

- Blocking scheme
- High impedance
- Low impedance
Model Development

Real-Time Simulator

Power System Model

Analog Inputs V, I

Digital Inputs
CB Contacts

Digital Output
All the Protection Trips From Relay

PMS System

Protection Logic
Model Development

- Load flow
- Short circuit
- Motor starting
Model Validation

- Load shedding
- Exciter response curve
- Governor response curve
- Controls – power factor or VARs, etc.
System Analysis

- Normal system operation
- Black start
- Exciter faults
- Governor faults
- System faults (bus / transformer)
- Contingency
<table>
<thead>
<tr>
<th>Component</th>
<th>Observed MTBF (years)</th>
<th>Unavailability (multiply by 10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEL POWERMAX Controllers and FEP</td>
<td>50</td>
<td>9.1</td>
</tr>
<tr>
<td>SEL-2411 PAC</td>
<td>150</td>
<td>3.0</td>
</tr>
<tr>
<td>SEL Relays</td>
<td>300+</td>
<td>1.5</td>
</tr>
<tr>
<td>Ethernet Switch</td>
<td>50</td>
<td>9.1</td>
</tr>
</tbody>
</table>
Conclusion

✓ Expandable and highly reliable system
✓ Communications options: synchrophasors, IEC 61850, Modbus / DNP3, MIRRORED BITS Communications
✓ Design verification and documentation
✓ Factory acceptance test with RTDS
Conclusion

- System / generator protection
- Arc-flash protection
- Flexible synchronizer
- Security
- Engineering station
- Analysis tools: SOE, ER
- Training and on-site support
Questions?