NEW APPLICATIONS

DP For Heavy Lift Applications

John Flint, Richard Stephens, Allan Meahan
Converteam

October 7-8, 2008
New Applications – Heavy Lift

Summary of Presentation

- Background
- Application
- Issue
- Solutions
- Proving the solution
- Conclusions
New Applications – Heavy Lift

Background

- Location
 - Area - Far East
New Applications – Heavy Lift

Background

- **Location**
 - Area - Far East
 - Country – China
New Applications – Heavy Lift

Background

- Location
 - Area - Far East
 - Country – China
 - City – Hong Kong
New Applications – Heavy Lift

Background

- Location
 - Area - Far East
 - Country – China
 - City – Hong Kong
 - Bridge – Stonecutters Bridge
New Applications – Heavy Lift

Background

- **Stonecutter Bridge**
 - Stonecutter Bridge will be one of the longest span cable-stayed bridges in the world.
 - The partially constructed bridge’s deck is about 75 m above water level
 - The span will comprise 65 segments, each with a mass in excess of 500 tonnes
New Applications – Heavy Lift

Background
New Applications – Heavy Lift

Background

- **Barge**
 - OAL = 76.2m,
 - B = 21.3m
 - 4 off azimuth thrusters, 6.5T Thrust each
 - Class 2 DP system
 - 2 off DGPS + 1 off Laser System

- **Segment**
 - L = 53m
 - W = 18m
 - M = 500T
New Applications – Heavy Lift

Application

- **Heavy Lift**
 - Barge Chang Sheng 302 fitted with a Converteam A-series duplex dynamic positioning system.
 - Using DP, the segment is positioned vertically below its final position in the span.
 - Hoist cables attached, tension is gradually applied, and the segment is lifted from the barge.
 - At 25%, 50% and 75% tension levels the operation is halted with all systems being evaluated.
New Applications – Heavy Lift

Application

- **Heavy Lift**
 - Barge Chang Sheng 302 fitted with a Converteam A-series duplex dynamic positioning system.
 - Using DP, the segment is positioned vertically below its final position in the span.
 - Hoist cables attached, tension is gradually applied, and the segment is lifted from the barge.
 - At 25%, 50% and 75% tension levels the operation is halted with all systems being evaluated.
New Applications – Heavy Lift

Application

- Forces
 - Crane imparts an oscillatory force.
 - Force is unknown to DP controller.
 - The force is up to 10 times the thruster force normally requested by the DP controller.
 - In order to damp oscillations it is necessary to apply thruster force in anti-phase to the velocity, not the position.
 - Affects both Manual and Automatic control.
New Applications – Heavy Lift

Issue

- In manual control
 - The normal reaction of a DPO is to
 - apply thrust in the direction to reduce any position error
 - back off the thrust
 - apply a decelerating thrust as the vessel approaches the target position.
 - Unsuitable during heavy lift operations
 - Likely to increase amplitude of the oscillations.

- Manual X
- External force
- Position Error

+ve

-ve
Issue

- In automatic
 - Normal reaction from the DP control system:-
 - Forces from crane are completely unknown to the DP system. They degrade the position and velocity estimates used to calculate thrust references to control the vessel.
 - Controller will apply thrust towards the aim position.
 - These two factors lead to poor damping of the oscillations, or even instability.
New Applications – Heavy Lift

Issue

- Simulation
 - Chang Sheng 302 Barge during a lifting operation using the control system with no changes
New Applications – Heavy Lift

Solution

- Manual control
 - Matrix modes - Allow the operator to select which axes are controlled manually.
 - Operator should not be overwhelmed, the advice for operators inexperienced with heavy lift operations:-
 - Do not attempt to dampen oscillations unless it is necessary to do so. Hydrodynamic drag forces will gradually reduce any oscillations.
 - If it necessary to change the average position of the barge, adjust the joystick position to apply a different thrust and leave it constant.
 - To damp out oscillations: at the peak of an oscillation, apply thrust away from the aim position.
New Applications – Heavy Lift

Solution

- **Automatic control**
 - Provide option to increase the velocity gain and decrease the proportional gain, which increases damping.
 - Done via slider.
 - During Lifting operations in DP control:
 - Keep gains at ‘normal’.
 - Oscillations will only increase gradually.
 - Increase damping if oscillations become noticeable.
New Applications – Heavy Lift

Proving the solution and understanding the issue

- **Manual control**
 - Untrained operator.
 - An initial response of no interventions. The barge oscillated slightly in the surge axis, and a lift could have been safely conducted.
 - Operator attempted to dampen the oscillations, and as expected, The interventions were inappropriate.
 - The amplitude of oscillations increased, and position control was rapidly lost

- **Manual control**
 - Trained operator.
 - Understanding the external forces exerted on the vessel during lifting.
 - Understanding the effect of using manual thrust for offsetting the vessel.
 - Understanding how to manage the situation
 - thruster selection – free or bias
 - Sensor & position reference selections
New Applications – Heavy Lift

Proving the solution and understanding the issue

- **Automatic control**
 - Extensively tested in a lifting environment.
 - Tensions equivalent to 10%, 25% and 50% of the segment weight were applied and held for long periods.
 - To induce position errors, a tug was used to drive the barge off position.
 - At all times the controller response was as expected and the barge was under control.
Conclusions

Lessons

A DP vessel under-taking heavy lift operations can become unstable.

- This instability is due to the stiffness of the ship-crane system, the unknown forces acting on the vessel and the unavoidable lags associated with feedback control.
- This instability can occur under both manual and automatic control.

For manual control

- Extra operator training needs to be included to understand the risk and its mitigation
- Improve the modes of operation to make the task easier.

For automatic control

- Understanding the complex control but offering a simple operator interface for sound judgment calls.
Conclusions

- **Dynamic Position System**
 - DP systems are designed from building blocks, high standards are maintained and lessons are continuously being learnt by all suppliers.
 - Sometime even users believe these systems could even make cups of tea – perhaps that will be in next years development.
 - BUT make no mistake – DP designers do want to understand what effects performance, whether it is weird thruster arrangements, strange power systems, new position reference systems, external forces etc. We need to know.
 - TRAINING, TRAINING, TRAINING especially how to cope with external unknown forces.
Thank you for your attention

This document contains confidential and proprietary information of Converteam and must not be used for any purpose other than that for which it is supplied by Converteam. Its contents must not be disclosed to any other person nor copied in whole or in part without the prior written consent of Converteam.

www.converteam.com