

DP INNOVATION

Automatic Tuning of a DP Vessel

Dr. John Leavitt, Benjamin I. Triplett, Alan C. Herold
L-3 Communications Dynamic Positioning and Control Systems

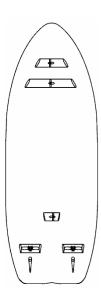
Automatic Tuning of a DP Vessel

John A. Leavitt, Benjamin I. Triplett, Alan C. Herold

Presented by
Dr. John Leavitt,
L-3 Communications DPCS

INTRODUCTION

- steps to tuning a DP control system:
- 1.fine-tune math models of the vessel and actuators
- 2.fine-tune controller parameters (e.g. PID gains)
- this presentation elaborates on Step 1
- tuning of the math models can be performed manually by an analyst, or using parameter estimation software
- any steps that can be performed by an analyst can theoretically be automated with equal or greater accuracy



equations of motion, etc.

THE MATHEMATICAL MODELS

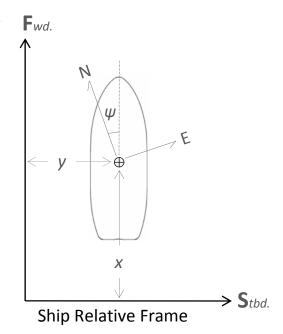
KINEMATICS OF THE 3 DOF MODEL

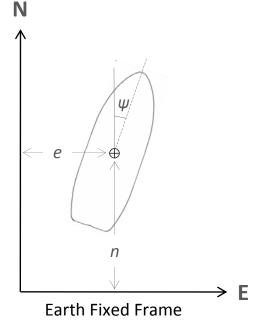
- *v* ("nu") is the ship's velocity in the relative frame
- η ("eta") is the ship's position in the fixed frame
- *R* is a coordinate transformation matrix
- x is the full state vector

$$\mathbf{x} = \begin{bmatrix} \eta \\ \nu \end{bmatrix}, \quad \dot{\mathbf{x}} = \begin{bmatrix} R \, \nu \\ \dot{\nu} \end{bmatrix}$$

$$\eta = \begin{bmatrix} n \\ e \\ \psi \end{bmatrix} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ \psi \end{bmatrix}$$

$$v = \begin{bmatrix} u \\ v \\ r \end{bmatrix} = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{n} \\ \dot{e} \\ \dot{\psi} \end{bmatrix}$$





DYNAMICS OF THE 3 DOF MODEL

$$M\dot{v} + C(v)v + D(v - v_c) = \tau + \omega$$

- the dynamics model¹ is expressed in the ship relative frame
- *M* is a mass matrix
- *C(v)*, a Coriolis matrix, is nearly zero during DP maneuvers and may be neglected²
- •D is a damping matrix
- ullet au and ω are control input and disturbance vectors, respectively

$$M = \begin{bmatrix} m_{11} & 0 & 0 \\ 0 & m_{22} & m_{23} \\ 0 & m_{32} & m_{33} \end{bmatrix}$$

$$C(v) = \begin{bmatrix} 0 & 0 & -m_{22}v - m_{23}r \\ 0 & 0 & m_{11}u \\ m_{22}v + m_{23}r & -m_{11}u & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & d_{23} \\ 0 & d_{32} & d_{33} \end{bmatrix}$$

PROPELLER MODEL

- ω is the shaft velocity of the propeller
- *p* is the pitch, or blade angle, of the propeller
- p_0 is the "zero-thrust" pitch value
- k_2 is the "pitch-to-thrust" exponent
- k_3 is the reverse efficiency factor

$$T = \begin{cases} T_{\text{max}} \left| \frac{\omega}{\omega_{\text{max}}} \right|^{k_1} \left| \frac{p - p_0}{\Delta p_{\text{max}}} \right|^{k_2} & \omega(p - p_0) \ge 0 \\ -k_3 T_{\text{max}} \left| \frac{\omega}{\omega_{\text{max}}} \right|^{k_1} \left| \frac{p - p_0}{\Delta p_{\text{max}}} \right|^{k_2} & \omega(p - p_0) < 0 \end{cases}$$

General Case ("combinator")

$$T = \begin{cases} T_{\text{max}} \frac{(p - p_0)^{k_2}}{\Delta p_{\text{max}}} & p - p_0 \ge 0 \\ -k_3 T_{\text{max}} \frac{(p_0 - p)^{k_2}}{\Delta p_{\text{max}}} & p - p_0 < 0 \end{cases}$$

Fixed RPM

SELECTION OF UNKNOWN MODELING CONSTANTS

Unknown Constants	Symbols
coefficients of the D matrix	d _{11,} d ₂₂ , d ₂₃ , d ₃₂ , d ₃₃
pitch-to-thrust exponent, main props	k ₂
reverse factor, main props	k ₃
zero-force pitch, main props	p_0
center of gravity, longitudinal	x _{cg}
maximum thrust, tunnel thrusters	$T_{1,max}$, $T_{2,max}$, $T_{3,max}$
rudder parameters	[not discussed here]

- ideally, every model parameter should be identified by the estimator
- realistically, we only identify the most uncertain constants
- due to relative size, main propellers receive special attention

DP tuning "by hand"

HUMAN ESTIMATION METHODS

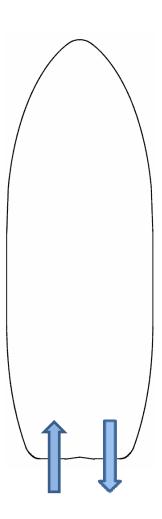
Reverse efficiency factor, main propellers

JOYSTICK METHOD

- main propellers are "biased" against each other while adjusting thrust levels until zero net force is observed
- method is sensitive to environmental forces

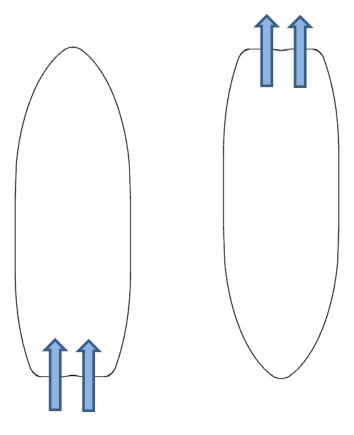
DP METHOD

- ahead-thrusting main is held at a fixed thrust level
- astern-thrusting main is controlled by DP system to hold station
- reverse factor is adjusted until vessel is unaffected by changes in the fixed thrust level of the ahead-thrusting main
- method is time-consuming



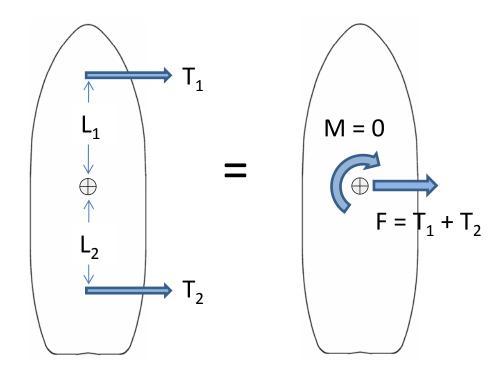
Main propeller pitch offset

- vessel holds its position at opposite headings
- average surge commands recorded
- ullet adjust p_o , repeat until equal forces achieved
- inaccurate and time consuming
- sensitive to inconstant environments



Center of Rotation

- ullet sway motions are executed while adjusting x_{cg} until no yaw coupling is observed
- if thruster ratings are not accurate, the true center of mass cannot generally be identified
- for example: 30% error in T_2 corresponds to 5m error in x_{cg} (for a 70m vessel).



maneuvers and algorithms

COMPUTER ESTIMATION METHODS

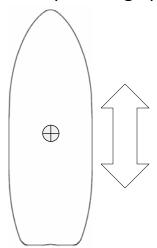
THE INVERSION PROBLEM

- 1. Record data from various maneuvers:
 - how to choose the best maneuvers?
 - sensitivity to unknown environmental forces?
 - maneuvers should be simple
- 2. Apply an estimation algorithm to "fit" the model to the real data:
 - EKF
 - UKF
 - least squares minimization

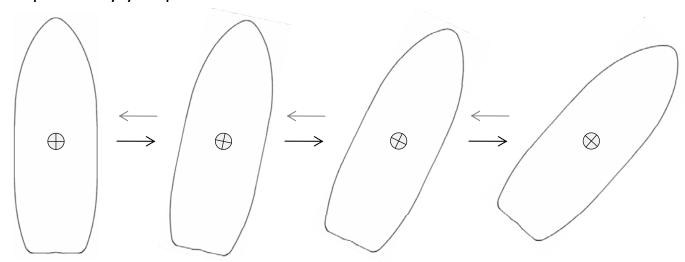
ESTIMATION MANEUVERS

*maneuvers performed twice, at reciprocal headings

Decoupled surge phase



Coupled sway-yaw phase



UNSCENTED KALMAN FILTER

- reportedly an improvement over EKF in many cases
- roughly the same computation effort as EKF
- does not require linearization of the ODEs
- failed to converge to an answer using real data
- appears unsuitable for this application

LEAST SQUARE METHODS

- commonly used in offline parameter estimation formulations
- can be computationally intensive
- unlike a recursive formulation such as Kalman, these algorithms have access to all the recorded data at each iteration
- bounds easily applied to estimates, guaranteeing a feasible solution

LEAST SQUARES FORMULATION

• thruster commands, u and position data, η , sampled with period Δt :

$$\hat{u}_k \equiv u(t_0 + k\Delta t) + \mu_k, \qquad \qquad \hat{\eta}_k \equiv \eta(t_0 + k\Delta t) + \nu_k,$$

- ullet curve fitting is applied to the position data to obtain the full state estimate \widetilde{x}
- for a given parameter set, p, a model trajectory is calculated:

$$\dot{x}(t) = f(x(t), u(t), p)$$

$$x_k = \begin{cases} \widetilde{x}_k, & k \in \{0, N, 2N, ...(m-1)N\} \\ f(x_{k-1}, \hat{u}_{k-1}, p) \cdot \Delta t + x_{k-1}, & k \notin \{0, N, 2N, ...(m-1)N\} \end{cases}$$

• next we minimize residuals, e, between real position data and the model trajectory

$$\min_{p} \sum_{i=0}^{Nm} e_i^T W e_i,$$

subject to $p_{\min} \le p \le p_{\max}$, where $e_i \equiv \hat{\eta}_i - diag([1\ 1\ 1\ 0\ 0\ 0]) \cdot x_i$

and
$$W = diag([1 \ 1 \frac{180}{\pi}])$$

LEAST SQUARES ESTIMATION RESULTS

Parameter	Estimated Value*	Expected Value*
d ₁₁	0.0054	0.0358
d ₂₂	0.0798	0.1183
d ₂₃	0.0150	-0.0124
d ₃₂	-0.0101	-0.0041
d ₃₃	0.0117	0.03080
k ₂	1.145	1.5
k ₃	0.45	0.4 < k ₃ < 0.7
p_0	-8%	observed to be < 0
x _{cg}	0.0083 aft of nominal	0
T _{max,2}	0.001387	0.001663
T _{max,3}	0.001664	0.001663

*normalized (Bis-system)

CONCLUSIONS

- Least squares minimization seems preferable to Kalman filter for DP tuning problems of increasing complexity
- this closed-loop formulation is a promising step towards total automation of the DP tuning process

THANK YOU

