Thrusters

Health Monitoring of Propulsion and Steering Devices

Arthur Boogaard
Eddy Engels
Albert Wesselink

Wärtsilä Propulsion The Netherlands
Condition based maintenance of Steerable Thrusters

Dynamic Positioning Conference 2005
Houston, Texas

Arthur Boogaard
Eddy Engels
Albert Wesselink

Wärtsilä Propulsion The Netherlands
Contents

- Introduction Wärtsilä Propulsion
- Steerable Thrusters design philosophy
- Failure cases and results of malfunctions
- Health Measuring of Steerable Thrusters
- Communication
- Conclusion
Wärtsilä Propulsion

Propulsion Products

Brand name LIPS
Health monitoring

- saving fuel consumption
- extend lifetime of components
- increase maintenance intervals
Design philosophy LIPS steerable thrusters

- Double supported pinion and gear wheels
- High quality forged steel gearwheels machined after hardening: Klingelnberg cyclo palloid HPG process
- Separate dedicated bearings for axial and radial loads
- Triple Viton lip type seals running on liners with ceramic coating
- Product range 900 kW – 7,000 kW
What can go wrong

- Seal damage: water content in lub oil reduces the life time of bearings and gears with 50%.
- Inadequate lubrication due to late filter / oil change
- Overloading of the thruster
- External impacts

Eventually this leads to early wear of gears and bearings
- Wear particles spread through the unit and affect other “healthy” components

THE HEALTH OF THE THRUSTER SLOWLY BUT STEADILY DETERIORATES
Results of malfunctions

- Unplanned maintenance / repairs
- Replacement parts
- Loss of redundancy (Class)
- Docking
Where to go

today tomorrow future
alarms monitoring diagnostics/
 early detection of deteriorating components
 • vibrations
 • moisture
 • particles

→
result: signals
• make trend line

• combine signals, remaining lifetime
• database
From alarming...

- temperature alarms
 - lubrication
 - steering

- pressure alarms
 - pumps
 - steering motors
 - filters

- level
 - gearboxes
 - header tanks

- Rely on expertise on board, Wärtsilä’s service
- Alarm: (too?) late, not source related
… to monitoring…

- Add sensors to system
 - Accelerometers
 - Moisture sensors
 - Particle detector

With signals:

- Detect early changes in behaviour
- Establish trend lines
• Accelerometers:
 ■ damage to race way / roller element
 ■ damage to gearing
 ■ vibration
 ■ determine frequencies → relation to damaged element
 ■ signal analyzing
Moisture sensor:
- Water affects gear and bearings
- Decrease of lifetime

Particle sensor:
- Detection wear bearings, gearing
- Cross reference to other sensors
Human interface

- Off-line monitoring
- Robust software
- Fit to purpose
- Easy to use
- Trend watching
Health monitoring

- local readout of individual signals
- health gears
- health bearings
… to (in future) diagnostic/prognostics…

- Use data from monitoring
- Add “belief” rules, expertise from practice
- Build neural network
- Self learning system
Health diagnostics system

- Signal Modulator
- Transmitter
- Electric Power Generation
- Receiver / Transmitter
- Receiver / Signal Demodulator

- Accelerometers near Roller Bearings
- Accelerometers near (Bevel) Gears
- Oil Moisture and Particle sensors
- Pitch actuating pressures

- Envelope Spectra
 - Roller Bearings
 - Gears
- Oil data processing
- Response identification

- Data Fusion & Decision Support

- GPS
- Pitch
- Azimuth
- RPM

- In rotating part
- Gear Box Section
- Stem Section
- Log-File

- Ship Network

- Oil Temp.
- Ambient Temp.
Conclusion

• Today: alarms
 ■ periodical maintenance / operating hours
 ■ alarms

 → actions too early / (too) late

• Tomorrow: monitoring:
 ■ early detection of deteriorating components
 ■ less unplanned dry-docking
 ■ decrease down time
 ■ decrease stock

 → less “surprises”, saving money

• Diagnostics/prognostics: in future