Sensors I

The Impact of GPS Modernization and Galileo on the DGNSS Service Provider and User

Dr. David Russell
Veripos, Subsea 7
The Impact of GPS Modernization & Galileo on the DGNSS User and Service Provider

Dr David Russell
Senior GNSS Technical Specialist
VERIPOS, Subsea 7
Overview

- Introduction
- Satellite Navigation Applications
- GPS Modernisation
- GLONASS Modernisation
- Galileo
- Impact on DGNSS User
- Impact on DGNSS Service Provider
- Conclusions
Introduction

- Satellite navigation technology has been used in the marine industry for numerous years

- Over the next decade there will be significant changes in Global Navigation Satellite Systems (GNSS)
 - Modernisation of GPS
 - Modernisation of GLONASS
 - Introduction of Galileo

- GPS History
 - 1967 – USAF Project 621B instigated
 - 1973 – NAVSTAR development begins
 - 1978 – First GPS satellite launched 22nd February
 - 1993 – GPS declared IOC for civil use 8th December
 - 1995 – GPS declared FOC on 27th April
Applications Of Satellite Navigation

- When GPS was being designed in the 60/70’s, the engineers could have never predicted how the technology would be used in the 21st century.

- Application areas by receiver types
 - Mass market receiver -- car navigation unit or hand-held for consumer outdoor applications
 - Mass market engine -- for cell phones and other applications requiring urban/indoor use
 - Precision receiver -- for machine control, GIS, survey, or scientific research
 - Safety-of-life transport receiver

- GNSS is essential in today’s world
 - embedded in many safety critical systems
 - used for Navigation & Defence…
 - …but also synchronisation of GSM networks, electricity networks, international banking transactions, Intelligent Transportation Systems
DGNSS In The Offshore Oil and Gas Industry

- In offshore operations there are 2 x types of requirement

- Navigation and positioning for survey applications
 - Seismic survey, hydrographic survey, construction and pipe-lay support
 - Positioning of vessels and structures
 - Requires high levels of accuracy and redundancy to ensure high-quality data

- Navigation and positioning for vessel station-keeping
 - Dynamic positioning / mooring monitoring
 - Stability of position - more important than accuracy
 - Other reference systems such as acoustics, taut-wire – mean less dependence on DGNSS except in deep water where there is likely to be greater dependence on DGNSS
 - Critical to vessel operation
Importance of DGNSS to Offshore Positioning

- Offshore industry was an early adopter of satellite navigation
- Made navigation and positioning more accessible to the wider community plus provided global coverage
- Now-a-days DGNSS is essential to all positioning and navigation offshore
- The offshore industry is a stakeholder in all GNSS systems
GPS Modernisation Objectives

- **Military**
 - Protection of service for US/Allied forces
 - Add new signals and increase signal power to improve Navwar capability
 - Develop and field improved anti-jam and security technologies
 - Prevention of adversary exploitation
 - Spectrally separate new military signals from civil signals

- **Civil**
 - Preservation of civil use while providing enhancements
 - Add new signals to improve accuracy and signal redundancy

- **First step was the termination of Selective Availability**
GPS Modernisation

- **New Civil Signals**
 - Inclusion of L2C on L2 carrier and L1C on the L1 carrier
 - Increased accuracy
 - More redundant signals

- **New Civil Frequency**
 - New L5 frequency at 1176.45MHz
 - Improved signal structure for enhanced performance
 - Signal less vulnerable to radio frequency interference
 - Better ambiguity resolution (TCAR)

- **Control Segment**
 - Upgrade of all monitor stations to track all new signals
 - Inclusion of additional 11 tracking stations
 - Better determination of orbital and clock errors thus increasing the accuracy of the GPS broadcast ephemeris
 - Fully redundant Alternate Master Control Station at Vandenberg, CA
GPS Satellite Evolution

Block IIA/IIR
- Basic GPS
 - C/A civil signal (L1C/A)
 - Std Service, 16-24m SEP
 - Precise Service, 16m SEP
 - L1 & L2 P(Y) nav

Block IIR-M, IIF
- IIA/IIR capabilities &
 - 2nd civil signal (L2C)
 - New military code
 - Flex A/J power (+7dB)

Block III
- IIF capabilities &
 - Improved civil signal (L1C)
 - Increased accuracy (4.8-1.2m)
 - Navigation security
 - Increased A/J power (+20 dB)

IIA / IIR: Basic GPS
- C/A civil signal (L1C/A)
- Std Service, 16-24m SEP
- Precise Service, 16m SEP
 - L1 & L2 P(Y) nav

IIR-M: IIA/IIR capabilities &
- 2nd civil signal (L2C)
- New military code
- Flex A/J power (+7dB)

IIF: IIR-M capability plus
- 3rd civil signal (L5)
GPS Signal Evolution

- **C/A**: Coarse acquisition
- **P(Y)**: Precise, encrypted military signal
- **L2**: Adding C/A-type code
- **L1 & L2**: Adding new military signal (M-Code)
- **L5**: Adding civil “safety of life” signal
GLONASS Modernisation

- GLONASS system is also undergoing a modernisation program

- GLONASS Program 2003-2011
 - Phase 1 - Add to current constellation
 - Maintaining constellation at minimal level
 - Phase 2 - Upgrade to GLONASS-M SV
 - Flight tests M-type in 2003/4
 - Increased lifecycle of 7 years
 - Introduction of a second civil frequency
 - Phase 3 - Further system upgrade to GLONASS-K SV
 - Upgrade of SV active life to 10 years
 - Reducing SV mass to provide launches of 6 to 9 SV at a time
 - Upgrade of the ground control complex
 - Introducing a third frequency
Galileo

- GALILEO : a GNSS designed by Europe
 - Tailored to the civil users
 - Providing worldwide coverage
 - Sovereignty, Independence, Service Guarantee
 - Certifiable for Safety of Life Applications
 - Market share for European Industry
 - Complementary to GPS / GLONASS
- Operated under public control and self financing
Galileo Services

- **Open Service (OS)**
 - open and free signals providing position and timing performances competitive with other GNSS systems (e.g. GPS)

- **Safety of Life Service (SoL)**
 - improves the open service performances through the provision of timely warnings to the user when it fails to meet certain margins of accuracy (integrity)

- **Commercial Service (CS)**
 - provides access to two additional signals, to allow for a higher data rate throughput and to enable users to improve accuracy

- **Public Regulated Service (PRS)**
 - provides position and timing to specific users requiring a high continuity of service, with controlled access

- **Search and Rescue Service (SAR)**
 - broadcast globally the alert messages received from distress emitting beacons
GPS and Galileo Signal Structures

Civil GPS
- L5 – 1176.45 MHz
- L2 – 1227.6 MHz
- L1 – 1575.42 MHz

Galileo
- E5A – OS & SoL [1176 MHz]
- E5B – OS & SoL & CS [1207 MHz]
- E6 – CS & PRS [1279 MHz]
- E2/L1/E1 – OS & PRS & SoL [1575.42 MHz]
Augmentation Services

- Various regional augmentation services are available to users providing freely available GPS and GLONASS corrections and are aimed at safety critical applications such as aviation.

- The main satellite based augmentation services include:
 - WAAS – coverage over North America
 - EGNOS – coverage over Europe
 - MSAS – coverage over Japan

- Accuracies are typically 2 - 4m depending on location within reference station coverage.

- Additional augmentation services are also in development such as BEIDOU (China) and GAGAN (India).
Impact on DGNSS User – Advantages

- Combined GPS / GLONASS / Galileo constellations will provide up to 80 satellites
- Availability of new signals
- Greater position accuracy – typical accuracies from combined L1 Galileo OS and GPS C/A code ~2.15m horizontal and ~4.26m vertical
- Greater integrity and availability providing more robust positioning
- Different signal combinations to suit different market requirements
- Development of new positioning techniques (e.g. TCAR/MCAR)
- Service guarantee on some signals and services if using Galileo, important for safety critical operations
Impact on DGNSS User – Potential Disadvantages

- Too many signals
 - which are the best combination of signals to use
 - restrictions on receiver power and size depending on application

- What types of receivers will be available
 - receiver manufacturers favour using common GPS and Galileo signals as it simplifies receiver and antenna design plus keeps costs lower
 - potential radio frequency interference on common signals reducing robustness of position

- Interoperability between GPS / GLONASS / Galileo
 - geodetic reference frame
 - time systems
 - signal structure
The impact of the modernised and new satellite constellations means significant changes to the service provider network.

Additional signals will impact:
- data collection – more signals means more information to be collected
- data transfer from network – increased communication bandwidth required
- data processing – more information to process
- message generation – more corrections / service information to generate
- transfer of service to user – more information means more bandwidth

Interoperability between GPS / GLONASS / Galileo
- geodetic reference frame
- time systems
- signal structure
Will the market want corrections for all available signals?
- signal choice may trigger a new era of expanding GNSS applications

What receiver equipment will be available?
- future reference station receivers will need to be capable of tracking all signals

Services required by the user will depend on positioning requirements
- there may be a point in the future when a dual frequency standalone position is more accurate than a single frequency DGPS position
- there may be no market requirement for differential GNSS services to support single frequency users due to freely available services
- Technical & operational support will continue to be a major part of the supply scope of the DGNSS provider

What update rate will be required for corrections?
- better clock stability on future satellites will reduce this major time varying error source that should allow for a lower frequency of corrections
Conclusions

- DGNSS users will see significant changes in the satellite navigation over the next 10 to 20 years

- This will include the availability of more satellites and also more navigation signals which will provide greater positional accuracy and reliability

- GNSS will have more redundancy because of the multiple constellations and no reliance on one nation

- The actual combination of signals to be used will be determined by the application and will be a trade-off between cost, accuracy and receiver design

- The modernised constellations and Galileo clearly show that satellite navigation will continue to the system of choice for navigation and surveying in the offshore industry
Questions?