Application of a Neural Network Predictor/Controller to Dynamic Positioning of Offshore Structures

Yusong Cao

C-Z Marine Technology, Inc. (New Orleans, LA, USA)

Zhengquan Zhou and William S. Vorus

University of New Orleans (New Orleans, LA, USA)
ABSTRACT

This paper describes an auto-regressive moving average (ARMA) functional-link neural network predictor/controller for dynamic positioning of offshore structures. The ARMA neural network predictor acquires the knowledge about the system through an on-line training using a small number of samples of the latest system status measured on board of the structure. The trained ARMA functional-link neural network is used with an optimal controller to control the output of the system. The accuracy and robustness of the ARMA predictor are demonstrated through the numerical simulations of two ship maneuvers. The neural network predictor/controller is applied to the dynamic positioning (station-keeping) of a ship in a uniform current with and without external environmental disturbances. The results of the numerical simulations are very satisfactory.

1. INTRODUCTION

As exploration and production for natural resources in oceans get into deeper water, the role of dynamic positioning (DP) of offshore floating structures is becoming increasingly important. A dynamic positioning or station keeping system employs the propellers, lateral thrusters, and other control devices (such as rudders) mounted on a structure and commanded by either human operator or automatic control system to counteract environmental forces due to wind, waves and current. The DP system maintains or assists to maintain the structure as close as possible to a desired position and heading in the horizontal plane so that the structure can operate properly. DP has many advantages over other position/station keeping methods (e.g. mooring lines, tension legs, etc.). These advantages (e.g. costs not increasing significantly with water depth, better accuracy and larger flexibility, applications to wider range of structure types, etc.) can be particularly significant for deepwater operations (CMPT, 1998).

Automation of DP increases the operation efficiency of the DP system by replacing the human operator with an automatic controller for regular operation within the design limits of environmental conditions. Most automatic systems employ closed-loop control in which the vessel’s response is compared to the desired position and heading and the difference is fed back to the controller to generate the control actions. Environmental sensors and a position reference system are needed to provide the feedback on the vessel’s location and heading, and environmental conditions (wind speed and direction; wave amplitude, frequency and direction; and current speed and direction; etc.).

Many control systems rely on algorithms of PID (proportional-integral-differential) type. These traditional control algorithms require a mathematical model of the vessel’s motion, and a solution method to solve the equations of motion and predict the position (including orientation) of the vessel given the environmental conditions. The predictions are compared continuously with the desired vessel’s position. The control action generated by a PID controller is proportional to the error (the difference between the prediction and the desired value) in the vessel’s position (the proportional term), its velocity of the error (the differential term) and the accumulation of the error (the integral term) error. The effectiveness and performance of the PID controller heavily depends on the accuracy of the mathematical model and the solution method, the computational speed of the prediction, the choice of the proportional, integral and differential constants. The computing power required for the prediction increases dramatically as the complexity and accuracy of the mathematical model and the solution method increase. Besides, many PID controllers are very frequency sensitive and a filtering of the signals from the sensors is required to achieve a good control. This requires significant additional computing power. A compromise between the accuracy of the prediction and a fast response of the controller has to be made.
Although significant amount of work has been devoted to increase the accuracy and speed of analytical predictions, the problem has not been solved satisfactorily.

Recently, there has been an increasing growth in interest in artificial neural networks and fuzzy logic theories over a wide spectrum of research domains. Within control engineering, neural networks and fuzzy logic controls are attractive because they hold the promise of solving problems that have so far been difficult to handle with traditional analytical methods. To acquire the knowledge about a process (or system), a traditional analytical method (such as a PID controller or other controllers based of a mathematical model of the vessel motion) uses the so-called white-box approach. If the characteristics of all the elements in the box (representing the process being considered) is known, then the relation between the output and the input of the process can be obtained. The white-box approach attempts to describe the elements in terms of mathematical formulae relating the system output to the input. Major drawbacks of the white-box approach are: 1) that a good mathematical model depends on our knowledge about each element in the box and our knowledge about the elements is incomplete most of time; and 2) that even if we can develop an accurate model, our ability to solve the mathematical problem is limited; assumptions about the physics of the process and approximations must be made to simplify the formulae so that a quick and reasonably accurate solution is possible. Therefore, in most cases, our knowledge about the process acquired through the white-box approach is incomplete. Neural network and fuzzy logic modeling, on the other hand, acquires the knowledge about the process using the so-called black-box approach. By observing enough number of input-output samples, the neural network or fuzzy logic modeling can establish the relation between the input and output of the process using network computing (similar to human’s brain neural computing) or fuzzy reasoning (similar to human’s reasoning). One of the advantages of controllers based on neural network and fuzzy logic model is that no mathematical modeling of the process is necessary, thus greatly reducing the computational time for the system behavior prediction. A considerable body of work has also shown that the neural network and fuzzy modeling can be more accurate than traditional analytical methods, especially for complicated processes.

The core of a fuzzy logic controller is the fuzzy associative memory rules that are derived from expert knowledge or experience about the system. These rules establish linguistically how the control output should vary with the control input. Given the control input, the controller applies appropriate rules to generate the control output. The control algorithm is very simple and a very fast and effective control action can be generated. Obviously, the performance of the fuzzy controller highly depends on how good the expert knowledge is. Like traditional controllers, a neural network controller usually has two main components: a process emulator (predictor) and a control algorithm. The emulator predicts the system’s behavior that is used by the control algorithm to generate the control action. In a traditional controller, the emulator consists of a mathematical model and the solution method. In the neural network controller, the emulator is an artificial neural network that possesses the knowledge about the system acquired through training and can predict the behavior of the system. A set of the measured system’s input-output samples are used to train the network. Once trained, the network is able to predict the system’s behavior. The prediction is then used by the control algorithm to generate the control action. The control algorithm can be those used in traditional controllers, such as PID algorithms or optimal control algorithms, etc.. Since the network learns the system through training (not expert knowledge), it can find a wider range of applications than the fuzzy controller, especially in the systems for which little expert knowledge is available.

In the recent years, attempts have been made in applying fuzzy logic controllers to surface ship path control (Parsons, Chubb, Cao and Stefanoupolou 1994), to depth control of unmanned undersea vehicles (DeBittrto 1994) and to autopilot design optimization (Robert 1997). It has been shown that fuzzy logic controllers have many advantages and can perform better than traditional controllers based on mathematical modeling of the dynamic process. Neural network controllers have also been applied to ship maneuvering controls. For example, Ishii, Fujii and Ura
(1994) developed a quick adaptive method based on a neural network for control of autonomous underwater vehicles. Zhang, Hearn and Sen (1997a, 1997b) used neural network approaches to design course-keeping autopilots, track-keeping controllers and automatic berthing systems. Gu, Pao and Yip (1992, 1993), Gu and Li (1994), and Li and Gu (1996) investigated a special neural network, the so-called functional-link network, for dynamic positioning of ships. Their work has shown a very promising potential for successful application of the neural networks to control of motions of offshore structures. However, the history of using neural networks in control of marine vessels and floating offshore structures is very short and more research and studies are needed before the technology becomes mature.

In this paper, we present a neural network predictor/controller for dynamic positioning of offshore structures. Our neural network predictor is developed based on the functional-link network proposed by Gu, Pao and Yip (1992, 1993). However, many improvements are made to increase the accuracy and speed of the prediction of the system behavior. The major improvements include: on-line network training and cost function for optimal control, etc. In the next sections, a brief description of the proposed neural network predictor/controller is given. Accuracy of the neural network prediction is verified and the effectiveness of the neural network controller for dynamic positioning of a ship is demonstrated with numerical simulations.

2. NEURAL NETWORK PREDICTOR

2.1 Basic Neural Network Predictor

Consider a time varying multiple-input multiple-output (MIMO) process as shown in Fig. 1, where

\[\mathbf{U}(t) = \{U_1(t), U_2(t), \ldots, U_N(t)\} \]

is the N-component input vector

and

\[\mathbf{Y}(t) = \{Y_1(t), Y_2(t), \ldots, Y_M(t)\} \]

is the M-component output vector.

A very basic artificial neural network representation of the system is illustrated in Fig. 2. The network consists of a few layers of nodes (neurons). A node in each layer receives signals from the nodes in the layer on the left and passes the modified (or weighted) signals to the nodes in the layer on the right. The first layer (input layer) receives the input signals. The signals are modified and passed to the second layer. The signals are then modified by the second layer and passed to the next layer. The passing of the signals continues on until the signals reach the last layer (output layer). The signals coming out from the output layer are transformed by a nonlinear squashing function into the system’s output. The layers between the input layer and the output layer are called hidden layers. This flow of signals through a network of nodes is very similar to the flow of signals passing through a human’s neural system (thus the term artificial neural network).

\[\text{Input} \quad \text{MIMO Nonlinear System Model} \quad \text{Output} \]

\[\begin{align*}
U_1(t) & \quad \rightarrow \quad & Y_1(t) \\
U_2(t) & \quad \rightarrow \quad & Y_2(t) \\
U_3(t) & \quad \rightarrow \quad & Y_3(t) \\
U_N(t) & \quad \rightarrow \quad & Y_M(t)
\end{align*} \]

Fig. 1 A MIMO system
Fig. 2 Structure of a basic artificial neural network for a MIMO system

The mathematical description of the signals passing through the network can be expressed as,

\[
\tilde{Y}_m(t) = g_m(O^i_m(t)) \quad (m = 1, 2, \ldots, M) \tag{1}
\]

where \(t \) is time, \(\tilde{Y}_m(t) \) is the \(m^{th} \) component of the system output from the neural network, \(g_m \) is a squashing function usually being a hyperbolic tangent function. \(I \) is the total number of layers. \(O^i_m(t) \) is the signal coming out from the \(m^{th} \) node in the output layer, and can further be expressed as,

\[
O^i_m(t) = \sum_{j=1}^{M_i} w_j^{(m,i)} O^{i-1}_j(t) \quad (m = 1, 2, \ldots, M) \tag{2}
\]

and the signals coming out from the \(m^{th} \) node in the \(i^{th} \) layer can be expressed,

\[
O^i_m(t) = \sum_{j=1}^{M_i} w_j^{(m,i)} O^{i-1}_j(t) \quad (m = 1, 2, \ldots, M_{i-1}) \tag{3}
\]

In the above equation, \(i \) is the layer index, with \(i = 1 \) being the input layer and \(i = I \) being the output layer. \(M_i \) is the number of nodes in the \(i^{th} \) layer, with \(M_1 = N \) and \(M_I = M \). \(O^i_m(t) = X_m(t) \) (for \(m = 1, 2, \ldots, N \)) are the input signals. \(w_j^{(m,i)} \) is a constant (termed weight) that represents the strength of the connection between the \(m^{th} \) node in the \(i^{th} \) layer and the \(j^{th} \) node in the \((i-1)^{th} \) layer. If the weights are known, one can calculate the system output from the network using Eqs. (1-3) given the system input.

The design of the network is to determine the weights so that the system output from the network predicts as closely the output of the real system. This is achieved by training the network with a series of measured sample input-output sets of the system. In other words, the system behavior is observed (measured) first, and the neural network learns from the measured data. Once the network has learned the system, it can be used to predict the future behavior of the system. The network training consists of choosing the weights so that the error between the predicted system output by the network and the measured system output is minimized. Let \((\hat{U}_n(k), n = 1, 2, \ldots, N)\) and \((\hat{Y}_m(k), m = 1, 2, \ldots, M)\) be a pair of the observed (measured) system input-output at time \(t = t_k \) for \(k = 1, 2, \ldots, K \). Usually, the system input-output is sampled at an equal time incremental, i.e. \(\Delta t = t_k - t_{k-1} = \text{constant} \) for all \(k \). A cost function for training the network can be defined as,
\[f(w^{(m,i)}_j) = \sum_{k=1}^{K} \left(\sum_{r=1}^{M} (\hat{Y}_r(k) - \hat{Y}_i(k))^2 \right) \]

where \(\hat{Y}_i(k) \) is the computed network’s system output by Eqs.(1-3) using the sample input \(\hat{U}_a(k) \). Now the training of the network is equivalent to finding the weights to minimize the cost function. In principle, the nonlinear minimization problem can be solved by any nonlinear optimization method.

There are a few important issues about this very basic network structure and training needed to be addressed:

1) **Computational effort.** It is very obvious that the computational effort depends on the number of the layers \(L \), the numbers of nodes in the layers \(M_i \), and the number of the training samples \(K \). In principle, the larger these numbers are, the better the network can emulate the system. However, the computational effort dramatically increases with increases in \(L \), \(M_i \), and \(K \), and can become computationally prohibitive and impractical for real-time control if \(L \), \(M_i \), and \(K \) exceed certain values. In the practice of engineering control, most of neural networks use only one hidden layer.

2) **Training sample size \(K \).** The size of the training sample should be large enough so that the system’s characteristics and behavior can be sufficiently captured. How large is sufficient? It depends on how the network will be trained and used. There are two types of training: off-line training and on-line training. In off-line training, the network only needs to be trained once. Once it is trained, the weights will stay unchanged in the prediction of the future behavior of the system. However, there are several disadvantages. First of all, the size of the training sample must be very large in order to cover as many as possible the situations that could happen in the future. It has been reported that the required size of sample data is in the range of 1,000 – 10,000 or even higher for control of marine vessels (Li, 1996, Zhou, Cao and Vorus, 2000). Secondly, in order for the network to retain the information from a large body of samples, larger numbers of hidden layer and nodes in each layer would be necessary. This would result in a very high up front computational cost. In on-line training, on the other hand, the training takes place as the process evolves. In other words, the weights of the network are updated up to the current time with very latest samples of the system’s input and output. For short-term prediction (one step or a few steps ahead), the required size of the training sample data can be dramatically reduced. Our study showed that \(K \) in the range of 10 to 30 is sufficient to result in very accurate predictions.

3) **Ability to generalize.** The network should not only be able to give a good prediction for the situations it has experienced in the training, it is also very important that the network is able to generalize from the “experience”, i.e. able to give a reasonably good prediction for situations not experienced in the training. Most neural networks have such ability. However, how well a network can generalize depends on how much “experience” it has and how close the future situations are to the situations experienced. One way to increase the ability to generalize is to increase the size of the training data so the network would be very “experienced”. This is what the off-line training tries to achieve. However, further increase in the size of the training data beyond a certain point would not necessarily increase the network’s ability to generalize. This is because that from the mathematical point of view, the network training is similar to fitting a curve through a large body of scattered data. If one tries to fit the curve through every data point, the curve is not likely to be smooth but varies violently and the prediction (or interpolation) for the non-sample points would be very poor. Similarly, if one wants the network to
“remember” every situation in the sample data, he/she needs to use large numbers of the layers and nodes in the layer (so that there would be enough number of weights/ constants for fitting through every sample data), which dramatically increases the computational cost. The network’s ability to generalize could also be very poor. If a small number of the weights are used, then the network is not trained to “remember” every situation as is done for most neural networks. The situations the network “remembers” have been distorted. A too large size of training data could overwhelm the network and distort the situations seriously. When predicting for a future situation, the network could correlate the future situation to some distorted situation. The on-line training, however, achieves good generalization by training the network with the data of the most recent situations, which are most close to the future situation for which the prediction is to be made. Therefore, the size of the training data can be very small and the network can “remember” the updated, little-distorted situations. The on-line training is used in our study.

4) Memory effect of time-evolving system. For time-evolving systems (such as dynamic system of marine vessels), there is a memory effect involved. In other words, the output of a system depends not only on the current input, but also on the system outputs at previous times. The type of the neural network shown in Fig. 2 can not very well represent the system.

2.2 ARMA Functional-link Neural Network Predictor

To overcome the difficulty with the high computational cost of the basic neural network with hidden layers, Gu, Pao and Yip (1992, 1993) proposed use of a so-called functional-link neural network. The structure of the network is depicted in Fig. 3. For simplicity of illustration, the structure of the network for a multiple input single output (MISO) system is shown; extension to a MIMO system is straightforward.

![Fig. 3 Structure of Functional-link Neural Network (for a MISO system)](image)

Instead of having hidden layers, Gu, Pao and Yip enhanced the input of the network with additional terms of nonlinear functions of the system input (called nonlinear enhancements),

\[
f_j(U) = g(A_j \cdot U + b_j) \quad (j = 1, 2, \ldots, N_f)
\]
where N_f is the number of the nonlinear enhancements. A_j is a vector of length N whose elements are random numbers. b_j is also a random number. g is a squashing function which usually is the hyperbolic tangent function,

$$g(u) = \tanh(u)$$

(6)

The network’s output is expressed as,

$$\tilde{y}(t) = g(\tilde{\alpha})$$

(7)

where

$$\tilde{\alpha} = \sum_{n=1}^{N} w_n U_n + \sum_{j=1}^{N_f} \beta_j f_j(U)$$

(8)

and w_n are the weights for the link of the inputs to the output and β_j are the weights for the link of the enhancements to the output.

The functional-link network can be viewed as a basic neural network of two layers (no hidden layer) with an expanded input vector (the original inputs plus the nonlinear enhancements). The same training methods can be used to determine the weights w_n and β_j. Note that A_j and b_j are not trained but are randomly generated constants prior to the training. Compared to the networks with hidden layers, the number of weights to be trained is, therefore, significantly reduced, and so is the computational cost for the training and prediction. Hornik, Stinchcombe and White (1989), Gu, Pao and Yip (1992,1993), and Li and Gu (1996) have demonstrated that the functional-link network trained with sufficient sample data from a system can serve as a universal approximator of the system, and it is fast and accurate.

However, like the basic neural network, the functional-link neural network in Fig. 3 cannot represent time-evolving systems very well. A time-evolving system, such as the motion of a marine vessel dynamically positioned, has memory effect. The system output depends not only on the current input but also on previous input and output. To develop a neural network for time-evolving systems, we combine the deterministic auto-regressive moving average model (ARMA model) in a traditional parameter identification theory and the functional-link network. The ARMA model assumes that the output of a time-evolving system can be expressed in the discretized form as a nonlinear function of the current input and previous input and output,

$$\textbf{Y}(k) = f(\textbf{U}(k), \textbf{U}(k-1), \textbf{U}(k-2), \cdots, \textbf{U}(k-m_u), \textbf{Y}(k-1), \textbf{Y}(k-2), \cdots, \textbf{Y}(k-m_y))$$

(9)

where m_u and m_y are the integers representing the time span of the memory effect for the input and output respectively. We take the system’s previous input and output as additional enhancements to the functional-link network. The structure of the new ARMA functional-link network is depicted in Fig. 4. The output of the network at time k can then be written as,

$$\tilde{\textbf{Y}}_m(k) = g(\tilde{\alpha}_m(k)) \quad (m = 1, 2, \cdots, M)$$

(10)

where

$$\tilde{\alpha}_m(k) = \sum_{r=0}^{m_u} \sum_{n=1}^{N} w_n (m,n,r) U_n(k-r)$$

$$+ \sum_{q=1}^{m_y} \sum_{l=1}^{M} w_y (m,l,q) Y_l(k-q) + \sum_{j=1}^{N_f} \beta_j g(A_j \cdot \textbf{U}(k)+b_j)$$

(11)
and \(w_{n}(m,n,r) \) is the weight for the link of the \(n \)th component of the input at time \(k-r \) to the \(m \)th component of the output at time \(k \); \(w_{l}(m,l,q) \) is the weight for the link of the \(l \)th component of the previous output at time \(k-q \) to the \(m \)th component of the output at time \(k \); and \(\beta_{j} \) is the weights of the \(j \)th nonlinear functional-link enhancement. These weights are to be trained with the sample data of the system so that the cost function is minimized,

\[
f(w_{n}(m,n,r), w_{l}(m,l,q), \beta_{j}) = \sum_{k=1}^{K} \sum_{p=1}^{M} \left(\tilde{Y}_{p}(k) - \hat{Y}_{p}(k) \right)^{2}
\]

(for \(n = 1,2,\cdots,N \); \(m = 1,2,\cdots,M \); \(r = 1,2,\cdots,m_{x} \);

\(l = 1,2,\cdots,M \); \(q = 1,2,\cdots,m_{y} \); \(j = 1,2,\cdots,N_{f} \)) \hspace{0.5cm} (12)

The on-line training will be used because of its advantages discussed earlier. A set of \(K + \max(m_{u},m_{x}) \) latest data samples are used to train the network. Every time step, the oldest sample is discarded and a most recent sample is added to the data set. The network is trained every time step. Once it is trained, the network can be used to predict the system output for the next time step given the input at the next time step.

\[Y(k) \]

\[\tilde{\theta} \]

\[U(k), K U(k - i), K U(k - m_{u}) \]

\[Y(k - 1), K Y(k - i), K Y(k - m_{y}) \]

\[G(A_{1}U + b_{1}), G(A_{j}U + b_{j}), G(A_{x}U + b_{x}) \]

Nonlinear enhancements of original inputs

Fig. 4 Structure of ARMA Functional-link Neural Network (for a SISO system)

2.3 The System: A Maneuvering Ship

The ARMA functional-link neural network is tested with the prediction of the motion of a maneuvering ship in the horizontal plane. Without losing generality, the results of numerical simulation of the motion of the ship, instead of the measured data of a real ship, are used for the network training and verification of the network. The purpose of the test is to verify the ability of the network to learn an unknown system, whether it is a real physical system or a numerical system. If the network can learn the numerical system, there is no reason not to believe that the network can learn the real system prediction since the neural network is a black-box approach.

Our system is based on the 3-degree-of-freedom nonlinear ship maneuvering equations given in Principles of Naval Architecture (1989),
\[(\Delta - X_{\delta_k}) \dot{\delta} = X^o + X_u \delta u + \frac{1}{2} X_{uuu} \delta u^2 + \frac{1}{6} X_{uuuu} \delta u^3 + \frac{1}{2} X_{vv} v^2 + \frac{1}{2} X_{rr} r^2 + \frac{1}{2} X_{\delta \delta} \delta^2_R \]

\[+ \frac{1}{2} X_{vvv} v^2 \delta u + \frac{1}{2} X_{rru} r^2 \delta u + \frac{1}{2} X_{\delta \delta u} \delta_R^2 \delta u + (X_{vr} + \Delta) v r + X_{v \delta} \delta_R \]

(13)

\[+ X_{r \delta} \delta_R + X_{v \delta u} v \delta_R \delta u + X_{v \delta u} \delta_R \delta u + X_{r \delta} r \delta_R \delta u \]

\[(\Delta - Y_{\delta_k}) \dot{\delta} = Y^o + Y_u \delta u + Y_{uu} \delta u^2 + Y_v v + \frac{1}{6} Y_{vvv} v^2 + \frac{1}{2} Y_{rr} r^2 + \frac{1}{2} Y_{\delta \delta} v \delta_R^2 + Y_{v \delta} \delta u \]

\[+ \frac{1}{2} Y_{v \delta \delta} v \delta u^2 + (Y_r - \Delta) r + \frac{1}{2} Y_{rr} r^3 + \frac{1}{2} Y_{rr} r v^2 + \frac{1}{2} Y_{r \delta} r \delta_R^2 + Y_{r \delta} \delta_R \delta u \]

\[+ \frac{1}{2} Y_{r \delta} r \delta_R^2 + Y_{\delta \delta} \delta_R^3 + \frac{1}{2} Y_{\delta \delta} \delta_R^2 v^2 + \frac{1}{2} Y_{\delta \delta} \delta_R^2 r^2 + Y_{\delta \delta} \delta_R \delta u \]

(14)

\[+ \frac{1}{2} Y_{v \delta \delta} \delta_R \delta u^2 + Y_{v \delta \delta} \delta_R \delta u \]

\[- N_{\delta_k} \dot{\delta} + (I - N_{\delta_k}) \dot{\delta} = N^o + N_u \delta u + N_{uu} \delta u^2 + N_v v + \frac{1}{6} N_{vvv} v^2 + \frac{1}{2} N_{rr} r^2 + \frac{1}{2} N_{\delta \delta} \delta_R^2

\[+ N_{v \delta} \delta u + \frac{1}{2} N_{v \delta \delta} v \delta u^2 + N_r r + \frac{1}{2} N_{rr} r^3 + \frac{1}{2} N_{rr} r v^2 + \frac{1}{2} N_{r \delta} r \delta_R^2 + N_{r \delta} \delta_R \delta u \]

\[+ \frac{1}{2} N_{r \delta} r \delta_R^2 + N_{\delta \delta} \delta_R^3 + \frac{1}{2} N_{\delta \delta} \delta_R^2 v^2 + \frac{1}{2} N_{\delta \delta} \delta_R^2 r^2 + N_{\delta \delta} \delta_R \delta u \]

(15)

\[+ \frac{1}{2} N_{v \delta \delta} \delta_R \delta u^2 + N_{v \delta \delta} \delta_R \delta u \]

All the quantities in the above equations are nondimensionalized based on the ship’s length, water density and the ship’s initial speed moving ahead along a straight line. Two coordinate systems are used to describe the ship’s motion: One is the ground-fixed system and the other ship-fixed, see Fig. 5. The same notation in PNA is used in writing the maneuvering equations. So the reader shall not be confused with the notations used in the earlier sections of this paper to describe the input and output of general systems. The meanings of the notations in Eqs. (13-15) are:

\[u \] --- ship speed in x-direction of the ship-fixed system;
\[v \] --- ship speed in y-direction of the ship-fixed system;
\[r \] --- ship’s rotation velocity (yaw rate) \(r = \Psi \) where \(\Psi \) is the ship’s yaw angle;
\[\ddot{u} \] --- acceleration of ship in x-direction of the ship-fixed system;
\[\ddot{v} \] --- acceleration of ship in y-direction of the ship-fixed system;
\[\dddot{u} \] --- rotational acceleration ship;
\[\dddot{r} \] --- rudder angle;
\[X^o \] --- increase in propeller thrust relative to the propeller thrust when the ship travels ahead steadily.

and

\[\delta u = u - u_1; \quad u_1 = 1 \] is the non-dimensional ship’s initial steady speed.
\[Y^o \] --- hydrodynamic side force on the ship when the ship travels ahead steadily. (zero for port-starboard symmetric ship);
\[N^o \] --- hydrodynamic moment on the ship about a vertical axis through the center of gravity of ship (z-axis) when the ship travels ahead steadily. (zero for port-starboard symmetric ship);
\[\Delta \quad \text{mass of ship;} \]
\[I_z \quad \text{mass moment of inertia about the z-axis.} \]
\[X_u, X_{uv}, Y_v, Y_{vv}, N_v, N_r, \ldots, \text{etc.} \quad \text{corresponding hydrodynamic derivatives.} \]

\(\Delta \) and \(I_z \) are considered known time-independent quantities. \(Y^o, N^o \), and the other hydrodynamic derivatives are also time-independent and can be obtained either by model tests or theoretical calculations. A dot above a variable indicates its derivative with respect to time.

The ship speed in the ground-fixed system can be written in terms of \(u \), \(v \), and \(\psi \),
\[\dot{x}_g = u \cos \psi - v \sin \psi \quad (16) \]
\[\dot{y}_g = u \sin \psi + v \cos \psi \quad (17) \]

where \((x_g, y_g)\) is the position of the ship’s center of gravity in the ground-fixed coordinate system. And, by definition, and we have,
\[\psi = r \quad (18) \]

Eqs. (13-18) can be re-arranged into the following form,
\[
\begin{bmatrix}
\dot{x}_g \\
\dot{y}_g \\
\dot{u} \\
\dot{v} \\
\dot{r}
\end{bmatrix}
= \begin{bmatrix}
h_1(x_g, y_g, \psi, u, v, r, \delta_R, X^o) \\
h_2(x_g, y_g, \psi, u, v, r, \delta_R, X^o) \\
h_3(x_g, y_g, \psi, u, v, r, \delta_R, X^o) \\
h_4(x_g, y_g, \psi, u, v, r, \delta_R, X^o) \\
h_5(x_g, y_g, \psi, u, v, r, \delta_R, X^o) \\
h_6(x_g, y_g, \psi, u, v, r, \delta_R, X^o)
\end{bmatrix}
\quad (19)
\]

Eq. (19) is a system of the first-order ordinary differential equations with respect to time. The vector \((x_g, y_g, \psi, u, v, r)\) can be regarded as the state variables because once they are determined, the system is completely known. The \(h \) functions on the right hand side of Eq. (19) are known functions of the state variables, the rudder angle \(\delta_R \), and the propeller thrust increase \(X^o \).
In our numerical simulation of ship maneuvering, \((\delta_R, X^o)\) and \((x_g, y_g, \psi, u, v, r)\) will be regarded as the input and output of the system respectively. With \((\delta_R, X^o)\) specified and \((x_g, y_g, \psi, u, v, r)\) known at time \(t\), Eq.(19) can be integrated in time to give the system output at the next time instant \(t+dt\). The fourth-fifth order Runge-Kutta-Fehlberg method is used to numerically integrate Eq.(19) in the simulations.

2.4 Prediction of Ship Motion by ARMA Neural Network Predictor (Numerical Tests)

The ship used for the numerical simulation is a Mariner class model. The information about the model (mass, moment of inertia, and hydrodynamic derivatives) can be found in PNA. In the numerical tests, the ship initially moves at a constant speed along a straight line. Then some specified rudder angle and thrust change are applied. The ship maneuver can then be simulated by numerically integrate Eq.(19) in the simulations.

Two simulation cases are used for the tests: zigzag maneuver and turning path maneuver. In both cases, the network predictions agree very well with the numerical simulations. However, when used for the ship motion control, the network predictor sometimes fails to give the needed prediction. For example, in station-keeping of a ship, the objective is to keep the ship to a fixed point with a desired heading direction. Suppose that the ship has been brought to the desired position and the heading and the environmental disturbance has ceased. To maintain the desired position, no control action is needed, i.e. \((\delta_R, X^o)\) is zero. Suppose that this situation lasts for more than \(K + \max(m_u, m_y)\) time steps. Then all the samples for the network training become identical. All the knowledge about the dynamic system is lost since the weights linking the input \((\delta_R, X^o)\) to the output \((x_g, y_g, \psi, u, v, r)\) are zero. When the environmental disturbance appears again, the network is not able to give the needed prediction and the control fails. To avoid this difficulty, we decompose the total system output into,

\[
\begin{pmatrix}
 x_g \\
 y_g \\
 \psi \\
 u \\
 v \\
 r
\end{pmatrix}_{t+dt} = \partial \begin{pmatrix}
 x_g \\
 y_g \\
 \psi \\
 u \\
 v \\
 r
\end{pmatrix}_{t} / \partial \delta_R \begin{pmatrix}
 \frac{\partial x}{\partial \delta_R} \\
 \frac{\partial y}{\partial \delta_R} \\
 \frac{\partial \psi}{\partial \delta_R} \\
 \frac{\partial u}{\partial \delta_R} \\
 \frac{\partial v}{\partial \delta_R} \\
 \frac{\partial r}{\partial \delta_R}
\end{pmatrix} \delta_R(t + dt) - \delta_R(t) + \partial \begin{pmatrix}
 x_g \\
 y_g \\
 \psi \\
 u \\
 v \\
 r
\end{pmatrix}_{t} / \partial X^o \begin{pmatrix}
 \frac{\partial x}{\partial X^o} \\
 \frac{\partial y}{\partial X^o} \\
 \frac{\partial \psi}{\partial X^o} \\
 \frac{\partial u}{\partial X^o} \\
 \frac{\partial v}{\partial X^o} \\
 \frac{\partial r}{\partial X^o}
\end{pmatrix} \left(X^o(t + dt) - X^o(t) \right) + \begin{pmatrix}
 \bar{x}_g \\
 \bar{y}_g \\
 \bar{\psi} \\
 \bar{u} \\
 \bar{v} \\
 \bar{r}
\end{pmatrix}_{t+dt}
\]
where the first and second terms are the linear contributions due to the changes in the rudder angle and the thrust increase, respectively. The last term contains everything left including the nonlinear contributions. The derivatives (columns in the first and second terms) are evaluated at time t and they can further be expressed as,

\[
\begin{pmatrix}
\frac{\partial x}{\partial \delta_R} \\
\frac{\partial y}{\partial \delta_R} \\
\frac{\partial \psi}{\partial \delta_R} \\
\frac{\partial u}{\partial \delta_R} \\
\frac{\partial v}{\partial \delta_R} \\
\frac{\partial t}{\partial \delta_R}
\end{pmatrix}_t =
\begin{pmatrix}
\frac{\partial x}{\partial \delta_R} \cos \psi - \frac{\partial u}{\partial \delta_R} \sin \psi \\
\frac{\partial x}{\partial \delta_R} \sin \psi + \frac{\partial u}{\partial \delta_R} \cos \psi \\
\frac{\partial y}{\partial \delta_R} \\
\frac{\partial u}{\partial \delta_R} \\
\frac{\partial v}{\partial \delta_R} \\
\frac{\partial t}{\partial \delta_R}
\end{pmatrix}_t
\]

and

\[
\begin{pmatrix}
\frac{\partial x}{\partial X^o} \\
\frac{\partial y}{\partial X^o} \\
\frac{\partial \psi}{\partial X^o} \\
\frac{\partial u}{\partial X^o} \\
\frac{\partial v}{\partial X^o} \\
\frac{\partial t}{\partial X^o}
\end{pmatrix}_t =
\begin{pmatrix}
\frac{\partial x}{\partial X^o} \cos \psi - \frac{\partial u}{\partial X^o} \sin \psi \\
\frac{\partial x}{\partial X^o} \sin \psi + \frac{\partial u}{\partial X^o} \cos \psi \\
\frac{\partial y}{\partial X^o} \\
\frac{\partial u}{\partial X^o} \\
\frac{\partial v}{\partial X^o} \\
\frac{\partial t}{\partial X^o}
\end{pmatrix}_t
\]

Derivatives $\left(\frac{\partial x}{\partial \delta_R}, \frac{\partial y}{\partial \delta_R}, \frac{\partial \psi}{\partial \delta_R}, \frac{\partial u}{\partial \delta_R}, \frac{\partial v}{\partial \delta_R}, \frac{\partial t}{\partial \delta_R} \right)$ are the increases in $(x_{og}, y_{og}, \psi, u, v, r)$ due to the change in the rudder (one unit). (x_{og}, y_{og}) is the movement of the center of gravity in the ship-fixed coordinate system. Similarly, derivatives $\left(\frac{\partial x}{\partial X^o}, \frac{\partial y}{\partial X^o}, \frac{\partial \psi}{\partial X^o}, \frac{\partial u}{\partial X^o}, \frac{\partial v}{\partial X^o}, \frac{\partial t}{\partial X^o} \right)$ are the increases in $(x_{og}, y_{og}, \psi, u, v, r)$ due to the change in the propeller thrust (one unit). These derivatives are not functions of time. They only depend on the ship’s mass, moment of inertia and the hull geometry and can be determined by either model test or theoretical calculation. They are considered known for a given vessel.

The first two terms on the right hand side of Eq. (20) are known. Only the last term needs to be learned by the neural network. Therefore, the input and output of the network are chosen as (δ_R, X^o) and $(x_g, y_g, \psi, u, v, r)$. The same on-line training procedure described above can be used except that the sample data must be modified by subtracting the first two terms on the right hand side of Eq. (20) from the “measured” system output $(x_g, y_g, \psi, u, v, r)$. The trained network can then predict $(x_g, y_g, \psi, u, v, r)$, and hence $(x_{og}, y_{og}, \psi, u, v, r)$, at the next time step given the input (δ_R, X^o).

The ARMA neural network predictor using the output-decomposition treatment is now able to give a needed prediction that a control algorithm can use to generate the control action when the above-mentioned situation in the station-keeping problem occurs. In such situation, although the training data does not contain any information about the dynamics of the system, the linear terms in Eq.(20) possess necessary characteristics of the system although incomplete. They can produce the needed prediction for use by the control algorithm to generate a proper control action. Once the controller responds to the environmental disturbance and the control actions have been taken, the updated training data will re-gain the information about the system. The network trained with the updated data shall then be able to provide better predictions. The effectiveness of the neural network predictor used with an optimal controller for the dynamic positioning of a vessel is demonstrated in Section 3. In this section we present the predictions of the neural network predictor for two ship maneuvers: zigzag maneuver and turning path maneuver. In both cases, the control actions are specified.

2.4.1 Zigzag Maneuver

In the zigzag maneuver, the typical procedure of conducting the test is as follows (PNA, 1989),
a) Bring the ship to the steady state: moving on a straight course at a prescribed speed and holding on this course for a certain period of time.
b) Deflect the rudder at a maximum rate to a pre-selected angle, and hold until a pre-selected change of heading angle is reached.
c) At this point, deflect the rudder at the maximum rate to an opposite angle and hold until the execute change of the heading angle on the opposite side is reached. This completes the overshoot test.
d) If a zigzag test is to be completed, again deflect the rudder at the maximum rate to the same angle in the first direction. This cycle can be repeated through the third or more executes.

For our test, the pre-selected rudder angle is 15° and the pre-selected change of the heading angle is 10°. The neural network parameters used are: $K = 15$, $m_u = m_v = 5$, and $N_f = 5$. The ship’s initial position is at (0,0) with a zero yaw angle and moves with speed $u_i = 1$.

![Equation of Motion vs. Neural Network Prediction](image)

Fig. 6. Rudder angle (δ_R), ship position (x_g, y_g), and yaw angle (ψ) vs. time

The rudder angle δ_R, the ship position (x_g, y_g) and yaw angle ψ (solid lines) by solving Eq. (19) and those predicted by the neural network (dashed lines) are shown in Fig. 6. The neural network predictions are so close to those of Eq. (19) that one cannot distinguish them graphically. Fig. 7 compares the ship’s trajectory by Eq.(19) and that predicted by the neural network, while Fig. 8 compares the translation and rotation velocities of the ship by Eq. (19) and those by the network prediction. Again, the results from Eq. (19) and the network prediction are too close to distinguish from the figures.

Fig. 9 and Fig. 10 show the differences (errors) in y_g and ψ between the neural network predictions and the simulation results using Eq. (19) since these two quantities are of primary interest in the zigzag maneuver test. The average error in $|y_g|$ is 0.29% of the ship length with a maximum error of around 1%. The average error in $|\psi|$ is 0.0038 radian. with a maximum of approximately 0.045 radian. The maximum error in ψ occurs every time when $|\psi|$ reaches the maximum, and stays for only a very short period of time.
Fig. 7 Trajectory of the Ship’s center of gravity

Fig. 8 Translation and rotation velocity of the ship vs. time
2.4.2 Turning Path Maneuver

Turning path maneuver is another important test of the ship’s maneuverability, and is also used to assess the effectiveness of the neural network. The same network parameters and ship’s initial condition as those in the zigzag maneuver are used. The rudder angle is deflected at the maximum rate to a pre-selected maximum angle of 10° and then held unchanged during the whole period of the simulation of the maneuver.

Fig. 11 compares the trajectory of the ship’s center of gravity by Eq. (19) and the network prediction. The two are so close that it is difficult to see the difference. Fig. 12 shows the translation and rotation velocities of the ship (both the results of the simulation and the network prediction). As expected, they are almost identical. Fig. 13 shows the errors in $|x_g|$, $|y_g|$ and ψ. The average error in $|x_g|$ is 0.16% with a maximum error of 1.5%. The average error in $|y_g|$ is 0.15% with a maximum error of 3%. The average error in $|\psi|$ is 0.0016 radian, with a maximum error of 0.008 radian. The maximum errors occur during the early stage of the maneuver when the rudder is deflected from zero to 10° rapidly.
Fig. 11 Trajectory of the ship’s center of gravity (turning path maneuver)

Fig. 12 Ship’s translation and rotation velocities (turning path maneuver)
Other values of the network parameters have also been used in the above two tests. The tests indicated that as long as $K \geq 10$, $m_x \geq 4$, $m_y \geq 4$ and $N_f \geq 4$, the neural network can give good predictions. One thing worth pointing out is that the errors in the neural network predictions are bounded with respect to time because of the on-line training.

The numerical tests have shown that the neural network is fast and the neural network predictions are very satisfactory. The effectiveness of the neural network predictor for use in dynamic positioning of a ship is then examined and the results are presented in the next section.
3. NEURAL NETWORK CONTROLLER

We combine the ARMA neural network predictor with an optimal controller (control algorithm) to result in a neural network controller for dynamic positioning of a ship. The control objective is to bring the ship to a desired fixed point \((x_d, y_d)\) in the ground-fixed coordinate system and keep the ship in that position with a desired heading \(\psi_d\). We define a cost function,

\[
\Phi(\delta_R(t+dt), X^o(t+dt)) = \\
(\tilde{x}_g(t+dt) - x_d)^2 + (\tilde{y}_g(t+dt) - y_d)^2 + (\tilde{\psi}(t+dt) - \psi_d(t))^2 \\
+ C_1 [u(t+dt) - u_1]^2 + v^2(t+dt) + C_2 \tilde{r}^2(t+dt) + C_3 (\delta_R(t+dt) - \delta_R(t))^2
\]

where \((\delta_R(t+dt), X^o(t+dt))\) is the rudder angle and the propeller thrust increase to be determined at time \(t+dt\). The optimal control algorithm searches for an optimal control action \((\delta_R(t+dt), X^o(t+dt))\) so that the cost function is minimized. In Eq. (21), variables with a “~” on the top are the predicted system output at \(t+dt\). \(\psi_d(t)\) is a desired intermediate heading angle defined as,

\[
\psi_d(t) = \psi_d - \arctg \left(\frac{y_g(t)}{X_{\text{ahead}}} \right).
\]

The first three terms on the right hand side of Eq.(21) aim at bringing the ship to the desired position and heading, while the remaining terms are introduced to reduce the excessive overshooting and high frequency oscillatory action of the rudder angle. The desired intermediate heading is also used for this purpose. Constants \(C_1, C_2\) and \(C_3\) are parameters to determine the relative importance between the first three terms and the remaining terms in Eq. (21). \(X_{\text{ahead}}\) is some length usually about 4-5 ship lengths.

For practical ship control, there are constrains on how fast the rudder can move and how fast the propeller thrust can change. There are also constraints on the maximum rudder angle and the maximum propeller thrust. Therefore, the control algorithm searches the optimal \((\delta_R(t+dt), X^o(t+dt))\) by minimizing the cost function with the constrains on \(\delta_R\) and \(X^o\). For the numerical simulations presented in this paper, the constraints are set as: the maximum \(\delta_R\) is 30°, the maximum change in \(\delta_R\) in one time step is 2°; The maximum \(X^o\) is 0.05 (non-dimensional), and the maximum change in \(X^o\) in one time step is 0.005.

The performance of the controller not only depends on the accuracy of the prediction but also on the control algorithm and the associated cost function. To verify the performance of the proposed control algorithm and the cost function, we first use the “exact” prediction from the equation-of-motion simulation to calculate the cost function. Our tests have shown that the performance of the controller is very satisfactory. We then use the neural network prediction and examine the performance of the ARMA neural network controller. For sake of brevity, only the results with the network controller are shown here.

Eq. (19) is used to calculate the ship’s motion in the simulation of the dynamic positioning of the ship with the neural network controller. At time \(t\), the network is trained with the sample data calculated using Eq. (19) at previous time steps. The system’s status \((x_g, y_g, \psi, u, v, r)_{t+dt}\) predicted by the trained network is used to evaluate the cost function in searching for the optimal \((\delta_R(t+dt), X^o(t+dt))\). This optimal control action is then used in
Eq. (19) to calculate the status of the ship at $t + dt$. The rudder angle and the thrust are assumed to vary linearly from $(\delta_R(t), X^o(t))$ to $(\delta_R(t + dt), X^o(t + dt))$. The results of the numerical simulations of two control problems are presented.

3.1 Case 1 (without environment disturbance)

The first case is a ship initially located at $(0, 4)$ against a current in the $-x$ direction in the ground coordinate frame. No environmental disturbances are present. The task is to bring the ship to point $(5, 0)$ and keep it in the position with a zero heading angle. Notice that Eq.(19) can be used to simulate the ship motion in a current with a simple coordinate transformation.

Fig. 14 shows the path and the heading of the ship. Fig. 15 and Fig. 16 show the rudder angle and the thrust increase as functions of time. The coordinates of the ship’s center of gravity and its heading are given in Fig. 17. These figures clearly demonstrate that the neural network controller has successfully accomplished the control task.

3.2 Case 2 (with environment disturbance)

The second case is the same as the first case except that there are some environmental disturbances present. The resultant effects of the disturbances can be represented by a force and a moment acting on the ship which are added to Eq. (19) in the numerical simulation. For the results presented, the disturbing force and moment are

$$
\begin{align*}
F_x &= 0.0001 \sin(\omega_1 t) + 0.0002 \sin(\omega_2 t + \gamma) \\
F_y &= 0.0002 \sin(\omega_1 t) + 0.0004 \sin(\omega_2 t + \gamma) \\
M_g &= 0.00005 \sin(\omega_1 t) + 0.0001 \sin(\omega_2 t + \gamma)
\end{align*}
$$

with $\omega_1 = 1$ and $\omega_2 = 2$. The numbers in the above expressions are chosen arbitrarily except they are in the same orders of magnitude as the hydrodynamic forces and moment on the ship.

Fig. 18 shows the path and the heading of the ship. Fig. 19 and Fig. 20 show the optimal δ_R and X^o as functions of time. The coordinates of the ship’s center of gravity and its heading are given in Fig. 21. As expected, they are different from those in the first case during the transient period because of the external disturbances. But the neural network controller is able to bring the ship to the desired position within about a same amount of time and keep the ship in the position with the desired heading.
Fig. 14 Path and heading of ship (without disturbance)

Fig. 15 Optimal rudder angle δ_R vs time t (without disturbance)
Fig. 16 Optimal thrust increase X^o vs. time t (without disturbance)

Fig. 17 Coordinates of ship’s center and heading angle vs. time t (without disturbance)
Fig. 18 Path and heading of ship (with disturbance)

Fig. 19 Optimal rudder angle δ_R vs time t (with disturbance)
Fig. 20 Optimal thrust increase X^o vs. time t (with disturbance)

Fig. 21 Coordinates of the ship’s center of gravity and heading angle (deg.) vs. time t (with disturbance)
4. CONCLUSIONS AND DISCUSSIONS

In this paper, we describe an ARMA neural network predictor for prediction of the output of MIMO systems. The advantages of the structure of the ARMA neural network and the on-line training of the network are discussed. A procedure of training the network on-line and utilizing the trained network with an optimal control algorithm for dynamic positioning (station keeping) of a ship is presented.

The effectiveness and accuracy of the network predictor are verified with the numerical ship maneuvering simulations: zigzag maneuver and turning path maneuver. The simulations have shown that the ARMA neural network is effective and fast. The network prediction is very accurate.

The feasibility of the neural network predictor/controller for dynamic positioning of marine vessels is demonstrated with the numerical simulations of station keeping of a ship with and without environmental disturbances. The neural network controller successfully accomplished the station keeping task. The predictor/controller was able to adapt itself through the online training and cope with the new situations (such as environmental disturbances) without the need for additional means to measure and analyze the disturbances.

The ARMA neural network predictor was designed for a general MIMO system so it can have a wide range of applications. In principle, this neural network predictor can be applied to any MIMO system as long as the system’s input and output are measurable. In this paper, the predictor has been validated with a 2-input-6-output system. Future work will validate systems with more inputs to include other control devises, such as lateral thrusters, in dynamic positioning of offshore structures.

In this paper, a mathematical model of the nonlinear ship maneuvering motion is used as a MIMO system to validate the neural network predictor/controller. The results of the work are very promising and encouraging. It is hope that trials can be performed using a vessel of model scale or full scale equipped with the necessary measurement and control devices. It is believed that, once validated, the ARMA neural network predictor/controller can be a very powerful, robust and reliable tool for the vessel operators.
5. REFERENCES

