DP Pipelaying
Dynamic Positioning Conference
October 13-14, 1998
Global Industries Offshore

Everything you never wanted to know about DP pipe laying
While eating lunch.
by
Sean Hickey
Pioneer
Chickasaw
Hercules - Before Conversion
DLB Hercules - Major Modifications

- Mid body section installed to lengthen to 440’.
- Focslle added to accommodate power equipment.
- Six thruster wells and thrusters installed.
- New control tower added.
- Pipe ramp and covers added.
- Stinger hitch added.
- New stinger built.
DLB Hercules - Principle Dimensions

- Length - 440 feet
- Width - 140 feet
- Depth - 25 feet
- Operating Draft - 15 feet
- Displacement - 28,875 tons
DLB Hercules - Plan View w / Reel
DLB Hercules - Installed Power

- 6 - 2600 kW EMD 4160 VAC Generators
- 3 - 500 kW 480 VAC Cat Ships Service Generators
- 1 - 315 kW 480 VAC Cat Emergency Generator
DLB Hercules - DP Propulsion

- 6 - 3000 HP KAMEWA azimuthing fixed pitch thrusters. 28 lb. / HP
- Driven by 3000 HP GE DC Motors.
- Power converted and controlled by GE 750 VDC SCR systems.
- KAMEWA - Manual Thruster Control Console.
DLB Hercules - Electrical One Line
DLB Hercules - Mission Equipment

- 2000 ton Clyde crane.
- Manitowoc 4100 crawler crane.
- Two 600 kip pipeline tensioners.
 - Fixed for conventional pipe lay.
 - Fleeting for reel pipe lay.
- Reel capable of reeling up to 48 miles of 8” pipe.
- A&R winch.
- Skid launching frame.
DLB Hercules - Dynamic Positioning System

- Nautronix ASK4002 Dynamic Positioning System
- 2 - Anschütz Standard 20 Gyro Compasses
- 2 - Watson Vertical Reference System
- 2 - R.M. Young Wind Sensors
- 2 - Deltec UPS Systems
- DMS with active Power Management
DLB Hercules - Positioning Sensors

- 1 - Ashtech GG24 DGPS / GLONASS w/ C&C SatLoc Corrections
- 1 - Ashtech GG24 DGPS / GLONASS w/ USCG Corrections
- 2 - Contract Survey DGPS inputs.
- 1 - RS914 Acoustic Positioning System
- 1 - ATS Acoustic Positioning system
- 1 - MDL FanBeam
DLB Hercules - Holding Capabilities

- 504,000 lb of bollard pull thrust.
- .61 HP / ton of displacement.
- Beam wind holding capability in excess of 70 knots.
- With 6% inflow degradation 80% thrust capable of holding station in coincident 3 knot current, 6’ significant wave height, and 45 knot winds at the worst angle of attack.
DLB Hercules - Beam wind holding capability

Total Thrust Available - 504,000 lbs.

<table>
<thead>
<tr>
<th>WIND SPEED/HEADING</th>
<th>0</th>
<th>22.5</th>
<th>45</th>
<th>67.5</th>
<th>90</th>
<th>112.5</th>
<th>135</th>
<th>157.5</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,088</td>
<td>1,595</td>
<td>1,879</td>
<td>1,896</td>
<td>1,644</td>
<td>1,896</td>
<td>1,879</td>
<td>1,595</td>
<td>1,088</td>
</tr>
<tr>
<td>10</td>
<td>4,350</td>
<td>6,379</td>
<td>7,514</td>
<td>7,584</td>
<td>6,578</td>
<td>7,584</td>
<td>7,514</td>
<td>6,379</td>
<td>4,350</td>
</tr>
<tr>
<td>15</td>
<td>9,788</td>
<td>14,352</td>
<td>16,907</td>
<td>17,065</td>
<td>14,800</td>
<td>17,065</td>
<td>16,907</td>
<td>14,352</td>
<td>9,788</td>
</tr>
<tr>
<td>20</td>
<td>17,400</td>
<td>25,515</td>
<td>30,058</td>
<td>30,338</td>
<td>26,312</td>
<td>30,338</td>
<td>30,058</td>
<td>25,515</td>
<td>17,400</td>
</tr>
<tr>
<td>25</td>
<td>27,188</td>
<td>39,867</td>
<td>46,965</td>
<td>47,402</td>
<td>41,112</td>
<td>47,402</td>
<td>46,965</td>
<td>39,867</td>
<td>27,188</td>
</tr>
<tr>
<td>30</td>
<td>39,151</td>
<td>57,408</td>
<td>67,630</td>
<td>68,259</td>
<td>59,201</td>
<td>68,259</td>
<td>67,630</td>
<td>57,408</td>
<td>39,151</td>
</tr>
<tr>
<td>35</td>
<td>53,288</td>
<td>78,139</td>
<td>92,052</td>
<td>92,909</td>
<td>80,579</td>
<td>92,909</td>
<td>92,052</td>
<td>78,139</td>
<td>53,288</td>
</tr>
<tr>
<td>40</td>
<td>69,601</td>
<td>102,059</td>
<td>120,231</td>
<td>121,350</td>
<td>105,246</td>
<td>121,350</td>
<td>120,231</td>
<td>102,059</td>
<td>69,601</td>
</tr>
<tr>
<td>45</td>
<td>88,089</td>
<td>129,168</td>
<td>152,167</td>
<td>153,584</td>
<td>133,203</td>
<td>153,584</td>
<td>152,167</td>
<td>129,168</td>
<td>88,089</td>
</tr>
<tr>
<td>50</td>
<td>108,752</td>
<td>159,467</td>
<td>187,861</td>
<td>189,610</td>
<td>164,448</td>
<td>189,610</td>
<td>187,861</td>
<td>159,467</td>
<td>108,752</td>
</tr>
<tr>
<td>55</td>
<td>131,589</td>
<td>192,955</td>
<td>227,312</td>
<td>229,428</td>
<td>198,982</td>
<td>229,428</td>
<td>227,312</td>
<td>192,955</td>
<td>131,589</td>
</tr>
<tr>
<td>60</td>
<td>156,602</td>
<td>229,633</td>
<td>270,519</td>
<td>273,038</td>
<td>236,804</td>
<td>273,038</td>
<td>270,519</td>
<td>229,633</td>
<td>156,602</td>
</tr>
<tr>
<td>65</td>
<td>183,790</td>
<td>269,499</td>
<td>317,485</td>
<td>320,440</td>
<td>277,916</td>
<td>320,440</td>
<td>317,485</td>
<td>269,499</td>
<td>183,790</td>
</tr>
<tr>
<td>70</td>
<td>213,153</td>
<td>312,556</td>
<td>368,207</td>
<td>371,635</td>
<td>322,317</td>
<td>371,635</td>
<td>368,207</td>
<td>312,556</td>
<td>213,153</td>
</tr>
<tr>
<td>75</td>
<td>244,691</td>
<td>358,801</td>
<td>422,687</td>
<td>426,622</td>
<td>370,007</td>
<td>426,622</td>
<td>422,687</td>
<td>358,801</td>
<td>244,691</td>
</tr>
</tbody>
</table>

Total Thrust Available - 504,000 lbs.
DLB Hercules - Holding Study with Pipe Tension

- 0.0 kt - 3.0 kt coincident current.
- 50 KIPS pipe tension at starboard stern quarter.
- Power degraded for one engine down.
- 80% thrust.

Figure 11
0.0kt - 3.0kt Current Comparison
W/ 50 kip Pipe Tension

Vessel
Global Industries - DB "Hercules"

Propulsors
6 X 3000hp Azimuthing thrusters
80% operating thrust available to maintain safety margin
8%/kt inflow current degradation applied
Reduced Generator Capacity – ~17% thrust reduction

Environment
Maximum Wind Speed
70.0 kt
Current Speed
0.0 - 3.0 kt
Sig. Wave Hgt.
6.0 ft

Date: 10/10/98
Created by: MCF
Why Dynamic Positioning?

- Unlimited water depths
- Accuracy.
- Congested areas.
Dynamic Positioning - Pipe Laying Vs. Drilling

- Drilling - Stay put.
- Pipe Laying - Keep on truckin’.
- Drilling - Weather vane.
- Pipe Laying - Hang on and pray.
- Drilling - Environmental forces only.
- Pipe Laying - Pipe tension included in environment..
Pipe Laying 101 - Pull Real Hard !!

- Not hard enough, pipe kinks.
- To hard, the pipe will be over stressed.
- J-Lay
 - Pipe laid from nearly vertical position.
 - Has only one significant bend near bottom.
- S-Lay
 - Pipe laid in horizontal plane.
 - Has two bends; one near surface and one near bottom.
 - Pipe is supported by a stinger near the surface.
Hercules - Stinger Attached
Pipe Tension and Dynamic Positioning

- Tension is seen by the control loop as an environmental force.
 - No tension sensor inputs other than for display and logging.
- Tension helps to stabilize the system.
 - Something to lean on.
- Tension can have a dramatic effect on heading control.
- Tension may diminish or augment holding.
Hercules - Track Mode
Conventional Pipe Lay

- **Positives**
 - Can lay larger diameter pipe.
 - Lower buy in cost.

- **Negatives**
 - Lots of people offshore.
 - Slow, therefore weather sensitive.
 - Quality control problems
Reel Pipe Laying

- Positives
 - Good quality control.
 - Fewer people offshore.
 - Fast trips offshore to hit weather windows.

- Negatives
 - Practical limits to size which can be spooled.
 - Shore base requirements.
 - Initial investment.
Initiating Pipelines

- From platform or shore based structure.
- From deadman anchors.
- From a deadman pile.
Terminating Pipe Lines

- Shallow water
 - Terminated by crazy person under water.
- Deep water
 - Terminated by crazy person driving ROV.