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Abstract 
 
In this paper, a family of passivity based controllers for dynamic positioning of ships is presented. 
We exploit the idea of shaping the energy function of the closed loop system to obtain different 
formulations of the passivity based control law using the IDA-PBC methodology. A salient 
feature of this study is that the proposed control laws are output feedback controllers and the 
relative velocity measurement is not required. First, we design and analyze two static controllers 
which can be seen as a nonlinear version of the conventional PD controllers. In presence of 
unknown disturbances, these controllers do not provide the desired regulation properties. To 
remove this discrepancy we propose, also in the context of the IDA-PBC technique, a dynamic 
extension of the system and obtain two new controllers which have the desired regulation 
properties. These new control laws can be seen as a nonlinear version of the conventional PID 
controllers. Simulations are included to validate the theoretical results. 
 

1. Introduction 
 

A dynamic positioning (DP) system is a computer controlled system which automatically 
maintains a vessel's position and heading by using propellers and thrusters. The computer 
program contains a mathematical model of the vessel which includes information pertaining to 
the wind and current drag of the vessel and the location of the thrusters. This knowledge, 
combined with the sensor information, helps the computer to calculate the required steering angle 
and thruster output for each thruster. The first DP system was introduced in 1960 and since then 
they have emerged as a popular alternative for the conventional mooring and anchoring 
techniques for the dynamical positioning of the ships. Over the past decades, with the 
revolutionary developments in microprocessor technologies and availability of fast computing 
machines, DP systems have become more economical and reliable. 
 
Generally, in DP problems, only position and heading measurements are available. This leads to 
the use of observers to estimate the state (mainly the velocities and the bias term) which are 
required to feedback into the control law. This problem is studied in many papers. Some 
examples include the Luengberger observer used in [14], a nonlinear observer designed in [3], or 
a passivity-based scheme considered in [4] and [9]. 
 
Furthermore, the measured position and heading signals are noisy and, also, with two different 
frequency components. The total ship motion can be seen as a superposition of a low frequency 
component (due to the wind, sea currents and thruster forces and moments) and an oscillatory 
term (the so-called wave induced wave frequency motion), which represents the effect of the 
waves [2]. 
 
However, DP only considers the slow variations and, consequently, the motion due to the waves 
should be removed before it enters in the controller algorithm. Kalman filtering techniques were 
proposed in [7] and [6], or see [5] for a recent overview. As pointed out in [4], Kalman filters 
require the use of a linear model, and the nonlinear motion should be linearized at various 
operation points. To overcome this drawback, in [5] and [9], a wave-frequency observer is added 
to compensate the wave disturbances. 
 
Due to the important role of the estimation and filtering process, the motion control system in the 
DP problem can be grouped in two basic subsystems: the observer system (or wave filter), and 
the controller, see Figure 1.  
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                  Figure 1. Basic scheme of components of a ship motion-control system. 
 
Various controllers have been proposed to stabilize the ship to the desired position. PI controllers 
are often used [2], however more advanced techniques are applied to this problem resulting in 
interesting control algorithms. Backstepping design, which also includes the observer stage, are 
presented in [3] and [13]. In [9] the whole stability of a PD-type controller with a passive 
observer is proved using a separation principle argument. Recently, sampled-data control theory 
has also been applied to the DP problem for designing the control law [8]. 
 
This paper is focused on the design of the control law assuming that the filtering and observation 
process are previously done. The main contribution is a family of passivity-based controllers 
which use the energy shaping of the closed loop system to ensure (local/global) asymptotic 
stability. Passivity-based techniques have been used in many applications. A nice feature of the 
passivity-based control design is the physical meaning of the resulting control laws and the 
concepts such as storage energy or dissipation which play a fundamental role in the stability 
analysis and performance. Stability properties, based on the Lyapunov theory, can be easily 
studied for the obtained closed loop systems. In the last decade, the Interconnection and Damping 
Assignment-Passivity-Based Control (IDA-PBC) methodology has emerged as an easy and a 
(quasi) step-by-step methodology to obtain passivity-based controllers, see for instance [12]. 
 
Two different energy functions are proposed in this paper. We start by illustrating the 
methodology using a quadratic and a trigonometric Hamiltonian function and recover a simple 
static controller which guarantees asymptotic stability. The energy shaping, based on a 
trigonometric function, improves the heading control. These controllers do not produce the 
desired regulation properties in presence of unknown disturbances. Consequently, in order to 
achieve the desired performance, a dynamic extension is proposed, and it results in a control law 
that can be interpreted as a nonlinear version of the conventional PID controller. A salient feature 
of the proposed controllers is that they do not require the relative velocity measures and, thanks to 
a dynamic extension, they also ensure a good regulation behavior even in presence of 
disturbances or unknown (or non-estimated) terms. 
 
The presentation of the contents of this paper is as follows: Section 1 is reserved for the 
introduction. It explains some of the basic details of the problem under consideration and recalls 
some existing works on this subject. In Section 2 the port-Hamiltonian framework is introduced 
and an overview of the IDA-PBC methodology for the design of passivity based controllers is 
given. Section 3 contains the details of the ship model which we study in this paper and its port-
Hamiltonian form is derived. In Section 4, a static controller based on the IDA-PBC methodology 
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is obtained. Two variants, a quadratic and a trigonometric, of this controller are then analyzed. 
Then, a dynamic extension is proposed to revamp the static controller for an improved 
performance. Section 6 contains the simulation results to give a qualitative measure of the 
performance of the proposed controllers and, finally, Section 7 consists of the concluding 
remarks.  
 

2. Hamiltonian Based Control  
 
2.1 Port-Hamiltonian modeling 
 
A large class of physical systems of interest in control applications can be modeled in the general 
form of port- Hamiltonian systems (PHS) [15]. PHS generalize the Hamiltonian formalism of 
classical mechanics to physical systems connected in a power-preserving way and encodes the 
detailed energy transfer and storage in the system, and is thus suitable for the control schemes 
based on the IDA-PBC. 
A PHS can be written, in an implicit form, as 
 
                                        
 
where  is the state (or Hamiltonian variables) vector,  is the interconnection 
(skew-symmetric, ) matrix ,  is the dissipation matrix (which is symmetric 
positive semi-definite,  is the external connection matrix,   is the 
control input vector, and  is the Hamiltonian (or energy) function. 
The so-called passive output, , is given by 
 
                                     
 
and the product  has, usually, unity of power. 
 
2.2 The IDA-PBC technique 

  
The Interconnection and Damping Assignment-Passivity-Based Control (IDA-PBC), [12], is a 
technique for designing controllers based on the port-Hamiltonian framework. It uses the passive 
stability properties to ensure the convergence of the system to the desired fixed point. The main 
idea behind the IDA-PBC is to define a new closed loop (or target) system with a Hamiltonian 
structure. The design problem summarizes into finding a control law such that the system behaves 
as 
 
                                   
 
where  and  has a minimum at the desired regulation point 

 . The stability of this system can be easily proved by using  as a 
Lyapunov function ( , see for instance, [11] and [12] for a detailed 
discussion). 
 
The design procedure reduces to finding matrices  and  and a desired closed loop 
energy function , which solve the so-called matching equation 
 
                            
 
Then, the control law becomes 
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A drawback of the IDA-PBC controllers is that they are, in general, not able to reject 
disturbances. To remove this discrepancy of the control design usually a dynamic extension of the 
system is done to obtain an integral action on the output error. Extension of the closed loop 
dynamics in the IDA-PBC framework can be done, in a natural way, only for passive outputs, 
[11]. A completely different problem addresses for non-passive outputs (or higher relative degree 
one outputs). In this case, a Hamiltonian based controller with an integral action can be obtained 
via a change of variables, [1]. For more mathematical details readers are referred to [10]. 
                          

3. The Ship Model 
 
A useful model describing the dynamics of a surface ship sailing in a horizontal plane having 
degrees of freedom, is given in [2], and it can be written as the following nonlinear system 
 
                           

 
where  is the position coordinate vector in the Earth-fixed reference frame, 

 is the relative vessel-frame velocity coordinate vector, 
 is the vector describing the forces and the torque in vessel-fixed reference 

frame provided by the propulsion system of the ship acting in the surge, sway and yaw directions, 
respectively, and 
 

    

 
is the coordinate transformation matrix which relates the Earth-fixed frame to the relative-frame 
of reference. A description of the two frames of reference is given in Figure 2. The D and M 
matrices are given by 
 

                                       D  

 
which are positive definite,  and , and  is a  zero matrix. The 
environmental disturbances due to the sea currents, waves, and wind are represented by 

 in the Earth-fixed reference frame. This bias term is constant in the Earth-
fixed reference frame, under assumption of constant or slowly varying currents. 
 
Along this paper, it is assumed that these nature effects (sometimes called as bias forces and 
moments), which can also be modeled as a first-order Markov process, [2], are either known or an 
estimate of the bias vector is available. Adding a note on the output of the system, we consider 
that the measurement system gives us noise free position and orientation measurements and that 
the wave frequency (WF) components from the measured output are filtered or estimated. Hence, 
in this paper, we skip the dynamics of the bias and the WF components. 
 
The main goal in the dynamic positioning problem is to stabilize the ship in a given 

coordinate. Without loss of generality, our objective is to design an appropriate control law  
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which stabilizes the system to the origin . Additionally, as the measurement of 
the relative velocity vector is not available, the control law should be independent of , and must 
be able to reject unknown disturbances or uncertainties. 
 
 

                                
        Figure 2. Description of the earth-fixed and the vessel-fixed frames of reference. 
 
 
We can write the system described in (6) in a PHS form (1) by using as a 
state , where  represents the Earth-fixed position and 
heading, and the momentum , is defined as . Substituting  
and  in (6), we get the following system 
 
                                              
 
with the following interconnection and damping matrices 
 

                           

 
the external connection matrices 
 
                                                       

 
and the Hamiltonian function given by 
 
                      
 
Note that the Hamiltonian function contains only a kinetic energy term, associated with the 
momentum variable. A potential energy, artificially added by the controller will play a key role to 
stabilize the ship in the desired position. From (2), we observe that the passive output for the 
system (7) is the velocity vector which does not correspond to the actual output of the system, the 
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position and the orientation. This is an important consideration for the control design, especially 
for the dynamic IDA-PBC control design in Section 5. 
 

4. Static IDA-PBC Controllers  
 

A family of static feedback controllers via IDA-PBC can be obtained for the model described by 
the equations (7)-(10). As has been described in Section 2, let us consider the following desired 
closed loop dynamics, 
 

      

 
where  is a symmetric positive semi-definite matrix and the desired energy function is  
 
                 
 
with the scalar function   such that  and . Following the details 
described in Section 2, we get the following static IDA-PBC controller 
 
        
 
with , this can be seen as a nonlinear output feedback PD controller with a feed-
forward term . With two different formulations of the energy function ,  
 

                     and,    

 
we get the following controllers 
 
                         
 

                         

 
 
where the matrices K and C are positive definite gain matrices. 
 
The role of the energy function in this study is that of a Lyapunov function. From the Lyapunov 
stability theory, we know that the stability properties of a dynamical system and the minima of 
the Lyapunov funtion have a close connection. In the sequel, we explain how this connection be 
exploited to improve the performance of the controller in our study. In particular, we consider a 
quadratic and a trigonometric energy shaping. Figure 3 gives an idea of the shape of the level 
surfaces corresponding to each energy shaping.   
 
The main motivation for the trigonometric energy shaping is that for certain applications where 
there are no external constraints (for instance, links with external objetcs), stabilization in  
or  is exactly the same. Figure 4, shows a possible scenario where the path for 
stabilization in  is shorter than the path for stabilization in  We will refer the 
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controller described by (14) as static quadratic and the one described by (15) as static 
trigonometric controllers, respectively.   

 
 
Figure 3. A comparison between the quadratic and trigonometric energy functions in and . 

 
                         

Hd(q1,q3) 
Hd1 

Hd2 



Muhammad and Dòria-Cerezo       Design Passivity based control for DP 

DP Conference Houston   October 12-13, 2010 Page # 

 

 
 

            Figure 4. Advantage of the trigonometric controller over the static controller. 
  
The stability properties of the proposed controllers are summarized in the following Proposition. 
 
Proposition 4.1: Consider the dynamical system (7) in a closed loop with the control laws (14) or 
(15), where the origin  is a minimum of , and the bias vector  and the matrix D are 
known. Then, the desired regulation point  is (locally) asymptotically stable.  
 

5. Dynamic IDA-PBC Controllers 
 
The static controllers described in the previous Section have nice stabilizing properties for the 
nominal case (when there is no disturbance or the disturbance is known perfectly). For the non-
nominal case, the static controllers do not give the desired stabilizing properties. As has been 
mentioned in Section 2, this discrepancy can be removed by A dynamic extension for a non 
passive output, maintaining the port- Hamiltonian structure, is possible by means of a change of 
coordinates. Following the idea in [1], we introduce a new state variable, , which is used 
to enforce the equilibrium point of the closed loop system to the desired one, and a change of 
variables . We define the target system as  
 

                                     = ,                                 (16) 

 
where  is a  matrix. The desired Hamiltonian function is defined as 
 
         
 
where  is a positive definite gain matrix. As for the static case, depending on the formulation of 

, we get the following two control laws 
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where and  are the positive definite gain matrices and other gain matrices are defined as   
 
                                   
                                         
                                  
 
We will refer to the controller described by (18)-(19) as the dynamic quadratic controller and the 
one described by (20)-(21) as dynamic trigonometric controller. The stability properties of these 
controllers are summarized in the following proposition.  
 
Proposition 5.1: Assume that q is measurable, and that the disturbances vector b and the 
matrices M and D are known. If  and  has a (local) minimum 
at the origin,  then the system (7) in a closed loop with both the controllers defined by (18)-
(19)  and (20)-(21), is (locally) asymptotically stable at the point . 
    Furthermore, if  is a global minimum of , then the origin of (7) is globally 
asymptotically stable.                     
 
 

 
6. Simulations  
 

In order to test the performance of the designed controllers we performed some numerical 
simulations. For this validation we used the data of a supply ship from [3]. The (Bis-scaled non-
dimensional [2]) matrices M and D are given by   
 

              

 
The bias vector has been set to  . For all simulation we considered that 
the initial conditions of the ship are  and the heading angle  rad, 
and the desired stabilization position is the origin. Precisely, the starting heading angle is set 
greater than  to show the ability of the so-called trigonometric controller to stabilize to the closer 
minimum, in this case   
 
6.1 Simulation results for the static controller 
 
Here, we present the simulation results for the static (quadratic and trigonometric) control laws 
(14) and (15), respectively. The gain matrices we used are  and 

. Precisely, for this system, we enlarged the damping (about one order of 
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magnitude in the first and third components), to improve the performance. 

 
                
Figure 5 Simulation results: ship position trajectories in the  -plane, for the static quadratic 
controller with extra damping (solid line) and the original damping coefficient (dashed line). 
 
In Figure 5 we show the trajectories of the same static controller (the quadratic case) with extra 
dissipation, setting Rp to the values proposed before, and keeping the original damping, Rp = D. 
This comparison justifies the use of the extra damping to obtain more suitable paths. 
 
Figure 6 shows the trajectories of the position coordinates  and , and the heading angle, , 
of the quadratic and the trigonometric versions. Both controllers stabilize the ship at the desired 
position and angle.  
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Figure 6. Simulation results: ship position coordinates  and , and heading angle, , for the 
static quadratic (solid line) and trigonometric (dashed line) controllers. 
 
The notable point is the difference in the orientation profiles. While the quadratic controller 
stabilizes the heading angle at , the trigonometric controller does so at  
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Figure 7. Simulation results: ship position trajectories in the -plane, for the static quadratic 
(solid line) and trigonometric (dashed line) controllers. 
 
Figure 7 compares the trajectories in the -plane for two versions of the static controller. In 
both cases, the performance is similar but, even the controllers for the  and  coordinates are 
the same (with the same gain values), the trajectories take different paths. This fact is associated 
with the different heading angle trajectories. 
 

6.2 Simulation results in presence of disturbances   
 

Here, we present the simulation results in presence of disturbances. The key point is to show that 
the dynamic controllers proposed are able to reject unknown terms. For this scenario we 
considered that the disturbance due to the bias term, b, is not available. Consequently, the feed-
forward term, , is removed in all the tested controllers. The gain matrices for the static 
controllers, (14) and (15), are the same as in the previous subsection. The corresponding gain 
matrices used for both the (quadratic and trigonometric) dynamic controllers, (18)-(19) and (20)-
(21), are ,  and 

. 
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Figure 8. Simulation results: ship position coordinates,  and , and heading angle, , for the 
static and dynamic (quadratic and trigonometric) controllers. 
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Figure 9. Simulation results: ship position trajectories in the ,  plane, for the static and 
dynamic (quadratic and trigonometric) controllers. 
 
In Figure 8, q trajectories for the four controllers are plotted. Clearly the dynamic controllers 
steer the ship to the desired equilibrium position while the static controller fails to do so and have 
some steady state error. This difference between the performance of the static and the dynamic 
controllers can also be seen from the respective trajectory profiles, see Figure 9.     

 
7. Conclusions 

 
A passivity-based approach called IDA-PBC is used to obtain a set of controllers for the dynamic 
positioning of a ship. This methodology is based on the port-Hamiltonian description which gives 
a physical interpretation of the dynamical systems. Under this point of view, the controller design 
problem is addressed as to shape the energy function of the closed loop system. After a general 
formulation we propose two different controllers: first with a quadratic energy function and 
second, inspired by the physics of a pendulum, with a trigonometric energy function. Also, the 
presence of disturbances is studied and it turns out that the obtained static control laws do not 
stabilize the system at the desired position. This discrepancy is the starting point for a second set 
of controllers which consists of a dynamic extension of the system which provides stability at the 
desired regulation point, also in presence of disturbances. Simulations are done to validate and 
compare the performance of the controllers designed. 
 
It is worth to mention that the obtained control laws, with a general form of state feedback, can be 
easily converted to output feedback algorithms that only require the position measurement. 
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Furthermore, they exhibit a simple structure that can be interpreted as non-linear version of PID 
controllers. 
 
Future work can be oriented in to determine other energy functions, , to improve the 
performance, as well as to consider the optimization of the resulting path. Further analysis 
depending on the nature of the disturbance vector (including the wave frequency and wind 
models) are possible. Also, this work could be a starting point for a new design, using the port-
Hamiltonian perspective, of the complete motion-control system (controller and observer) for a 
DP problem. 
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