RISK

Onboard Tools for Planning and Optimizing SIMOPS

Donogh Lang – MCS, Galway, Ireland
Gavin Rogers – MCS, Galway, Ireland
Alan Dougan – Fugro GEOS, Glasgow, UK

October 13-14, 2009
Overview of Presentation

• Background

• Onboard planning tool
 – Onboard SIMOPS simulation
 – Onboard simulator inputs
 – Operator interface

• Example application

• Conclusion
Overview of Presentation

• Background

• Onboard planning tool
 – Onboard SIMOPS simulation
 – Onboard simulator inputs
 – Operator interface

• Example application

• Conclusion
Drilling Riser SIMOPS – Background

- High drilling rig day rates
 - Driving need to maximize efficiency
- Dual activity rigs:
 - Dual derrick
 - High-capacity subsea cranes & winches
- SIMultaneous OPerationS:
 - Subsea operations carried out with drilling riser deployed:
 - Running casing
 - Subsea equipment installation (X-mas trees, manifolds, etc.)
Onboard SIMOPS Planning

• Problem:
 – Feasibility of SIMOPS dependent on metocean conditions
 – Operations in high current areas
 – Planning essential to minimize risk

• Solution:
 – Advanced on-board software used to plan SIMOPS
 – Plan operations using *prevailing* or *forecast* data
 – Removes conservatism associated with assumed metocean conditions
SIMOPS Planning & Riser Management

Onshore

- Integrity Assurance: Analytical
 - Operability
 - Connected
 - Unconnected
 - Fatigue
 - Connected
 - Unconnected
- Integrity Assurance: Mechanical Qualification
 - Seal Tests
- Operations Planning
 - Operability Planning
 - Riser Response Prediction
 - Etc.
 - Installation Planning
 - Riser Running/Retrieval
 - Equip. Running/Retrieval

Offshore

- Real-Time Monitoring
 - ADCP
 - Riser Vibration
 - Riser Tension
 - Riser Angles
 - Slip Joint / Tensioner Stroke
- On-Board Simulation Software
 - Operations Planning
 - Measured Environment
 - Forecast Environment
 - Position Optimization

Onboard Riser Operations Planning & Management
Overview of Presentation

• Background
• Onboard planning tool
 – Onboard SIMOPS simulation
 – Onboard simulator inputs
 – Operator interface
• Example application
• Conclusion
Onboard SIMOPS Simulation

- Intuitive, easy to use, simple to interpret
- Core analysis engine from MCS Flexcom/DeepRiser
- Models established onshore
- Operates in "online" or "offline" modes:
 - Online – data acquired from other vessel systems
 - Offline – all inputs specified by operator
Onboard Simulator Inputs

- Vessel data:
 - Position & heading

- Riser data:
 - State (connected/hung-off)
 - Top tension
 - Mud weight
 - No. of joints deployed

- Metocean data:
 - Ocean current profile

- SIMOPS operation details:
 - Nature of operation
 - No. of stages to be examined
Overview of Presentation

- Background
- Onboard planning tool
 - Onboard SIMOPS simulation
 - Onboard simulator inputs
 - Operator interface
- Example application
- Conclusion
Example – Running Casing

- Installation of 36” casing
- Drilling riser deployed
- 10,000 ft water depth
- 10 installation stages examined
 - User specifies length of casing run for each stage
- At each stage:
 - Clearance between riser and casing examined
 - Recommended heading to maximize clearance calculated by tool
Casing Running Example – Overview

- Numerical (FE) model of riser & casing
- Range of casing running depths analyzed
 - Models for each configuration automatically generated
- Input data – combination of measured and operator specified data used
 - Current profile – ADCP
 - Riser profile – riser angle data
Casing Running Example – Input Data

<table>
<thead>
<tr>
<th>Input</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel Data:</td>
<td></td>
</tr>
<tr>
<td>Vessel Position & Heading</td>
<td>DP System / DGPS & Gyrocompass</td>
</tr>
<tr>
<td>Riser Data:</td>
<td></td>
</tr>
<tr>
<td>Top Tension</td>
<td>Tensioner System</td>
</tr>
<tr>
<td>Mud Weight</td>
<td>BOP Mux</td>
</tr>
<tr>
<td>Telescopic Joint Stroke</td>
<td>Tensioner System</td>
</tr>
<tr>
<td>Casing Data:</td>
<td></td>
</tr>
<tr>
<td>Casing Running Down Depths</td>
<td>Operator Input</td>
</tr>
<tr>
<td>Clearance Tolerance with Riser</td>
<td>Operator Input</td>
</tr>
<tr>
<td>Environmental Data:</td>
<td></td>
</tr>
<tr>
<td>Riser Angle Data</td>
<td>ERA System</td>
</tr>
<tr>
<td>Current Profile</td>
<td>ADCP</td>
</tr>
</tbody>
</table>
Casing Running Example – Procedure

1. Riser Model
2. Initial Static Analysis
3. Analysis with Current & Mean Ambient Loading
4. Vessel Heading Sensitivity Analyses
5. Recommended Heading Calculation
6. Clashing Data
7. Recommended Heading
Recommended Headings at each Installation Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Heading (deg)</th>
<th>Max Clearance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>270.0</td>
<td>39.9</td>
</tr>
<tr>
<td>2</td>
<td>270.0</td>
<td>51.3</td>
</tr>
<tr>
<td>3</td>
<td>270.0</td>
<td>47.0</td>
</tr>
<tr>
<td>4</td>
<td>270.0</td>
<td>46.2</td>
</tr>
<tr>
<td>5</td>
<td>270.0</td>
<td>56.7</td>
</tr>
</tbody>
</table>

Fig. 1: Equipment Clearance v Heading, Stage No. 1 - Stage No. 5

True Vessel Heading = <50 deg

Stage No. 1, Depth = 1000.0 ft
Stage No. 2, Depth = 2000.0 ft
Stage No. 3, Depth = 3000.0 ft
Stage No. 4, Depth = 4000.0 ft
Stage No. 5, Depth = 5000.0 ft
Export for Visualization

DC-114 Clashes With:
Drilling Riser at E:260.444, N:9890596, D:572.82
Overview of Presentation

• Background

• Onboard planning tool
 – Onboard SIMOPS simulation
 – Onboard simulator inputs
 – Operator interface

• Example application

• Conclusion
Conclusion

- **Onboard simulator** provides capability to plan SIMOPS in prevailing/forecast environment
- **Minimizes risk** of operations through planning
- **Maximizes operating window** – through use of actual metocean conditions
- **Deployed** on 6 vessels to date
Authors & Acknowledgements

• Donogh Lang, MCS
 – DonoghLang@mcs.com
 – Tel.: +353 91 481210

• Gavin Rogers, MCS

• Alan Dougan, Fugro