SENSORS

Integrating Other GNSS with GPS and Its Implication for DP Positioning

Dr. David Russell
Technical Support Manager
Veripos

October 7-8, 2008
Presentation Overview

Introduction
Global Navigation Satellite Systems
 GPS
 GLONASS
 Galileo
 COMPASS
Integration of GPS and GLONASS
Implications for DP
Conclusions
Introduction

• Satellite Navigation is a key technology within the offshore oil and gas sector
 – Utilised since early 1990’s
 – Has made positioning and navigation more accessible
 – Used extensively within DP systems
 – To date the Global Positioning System (GPS) has been used exclusively

• Moving to a new era in satellite navigation with the availability of more satellites and signals

• This presentation will look at the advantages that this will bring to the offshore positioning market

• It will also look at the challenges that will be faced when integrating different satellite constellations
Global Navigation Satellite Systems

• The SatNav landscape is changing
 – Modernisation of GPS
 – Replenishment & Modernisation of the Russian GLONASS system
 – Addition of new European and Chinese systems

• Benefits include
 • Availability – more satellites and signals giving better geometry
 • Accuracy – newer signals permitting better signal tracking and will be able to selectively reject questionable data
 • Reliability – better signal tracking under challenging conditions
 • Independence – will be possible to have different position solutions for each constellation in addition to a combined solution
GNSS Frequency Spectrum

© Septentrio
Global Positioning System (GPS)

• Present GPS constellation has 31 satellites on orbit

• New signals – L2C, L5 and in the future L1C

• First signal that will be available to civilian users is the L2C
 – Tracking coded signal (as opposed to semi-codeless) = high SNR
 – Better chipping rate provides better signal tracking
 – More robust and accurate signal tracking when multipath present
 – Pilot signal which carries no data meaning that receivers can acquire the signal under weak condition (e.g. RF interference or ionosphere scintillation)

• The future for GPS
 – Affirmed to IMO that system will remain free and will provide at least 6 years notice prior to any termination of service
GLONASS

• The Russian equivalent of GPS has been undergoing a revival with the launch of new satellites which has made the system a viable alternative to GPS
 – Presently the system has 17 operational (healthy) satellites
 – 3 added on 26th Sept 08 with 3 more scheduled for launch in December 08
 – Improvements to geodetic reference frame and ground control segment = better accuracy
 – Recently, the Russian government announced extra funding for GLONASS program (67 billion roubles)

• Looking to modernise the constellation
 – New generation of satellites
 – New civil signal at L3 and the possible change to code division multiple access for the L1 signal
Galileo

• At present the Galileo program is looking to place contracts with companies to implement the system (ground and space segment)

• At present 2 satellites are in orbit – Giove-A and Giove-B

• Advantages of the Galileo signals compared against the current GPS satellites:
 – Power of signals will be greater by a factor of 2 = reduction in tracking noise
 – Pilot signal (data-less)
 – Signal modulation schemes will result in reduction of tracking and multipath noise
 – Robust coding scheme for nav bits to increase reliability of decoding (useful in presence of interference or with low signal power)

• Recent glitch with the Giove-B satellite when affected by solar radiation and satellite was put into safe mode – still under investigation by ESA
COMPASS

• The Chinese have launched a satellite with SatNav capability named COMPASS (or Beidou 2)

• There is very little information in the public domain about the signal and data structures and no ICD has been published
 – No timeline or launch schedule available for the system

• Various organisations have managed to decode the signals and successfully track the satellite

• The current plan calls for a system to provide global positioning and navigation
 – Constellation of 35 satellite (5 geostationary)
 – Three frequency structures that operate at similar frequencies to GPS & Galileo
Integration of GNSS

• Why integrate different Global Navigation Satellite Systems?
 – More satellites providing better geometry
 – Additional measurements giving redundancy and also the potential for rejecting questionable data
 – Additional data allowing multiple parameter estimation
 – Better accuracy when new or modernised signals become available
 – More signals at different frequencies aids resilience to potential interference

• GPS – the geriatric system??
 – 19 satellites are past their design life with many only one component away from navigation payload failure
 – US policy is still that GPS is a 21 satellite system with 3 spares

• Integration of different GNSS helps prevent the reliance on just one system and provides more opportunity to provide a more robust position solution
Integration of GPS and GLONASS

• Each GNSS operates in a similar fashion – i.e. they broadcast radio signals with information that allows a user to determine their position

• The differences in each system must be accounted for when developing an integrated solution so that the position solution is not degraded in any way

• Main difference between GPS and GLONASS is the frequency of transmission
 – GPS broadcasts a L1 and L2 frequency using different codes for each satellite
 – GLONASS uses frequency division multiple access to uniquely identify each satellite

• Data snooping/rejection
 – Measurement quality from older GLONASS satellites can be questionable

• Other areas that need to be addressed are:
 – Ephemeris
 – Atmosphere
 – Geodetics
Ephemeris / Almanac

- Each satellite system broadcasts Ephemeris and Almanac data which allows users to determine the position of the satellites
- GPS and GLONASS transmit parameters in a different format and also in a different reference frame and time system
- Typically operate in the GPS system, so must convert the GLONASS satellite positions into the GPS reference frame
- GLONASS ephemerides are typically updated every 30 min (GPS is every 2 hours)
- This update contains a value which permits the user to determine the which ephemeride was used to generate the RTCM correction
Atmosphere

- Atmospheric delays (ionosphere and troposphere) also need to be accounted for to improve the accuracy of the position solution.

- Troposphere delays occur in the lower part of the atmosphere and the same techniques used for GPS can be applied to GLONASS as the frequency of the signal does not have any impact.

- Ionosphere delay is affected by the frequency of the transmitted signal:
 - GPS broadcasts a Klobuchar model to compensate for the iono-delay.
 - Klobuchar delays are derived with respect to L1 frequency.
 - GLONASS broadcasts on multiple frequencies so the equation needs to be modified.

- Currently investigating the use of the GLONASS second civil signal to determine the true iono-delay (similar to using L1-L2 GPS).
Geodetics

• Perhaps the most important area that needs to be addressed in order to provide high accuracy positioning is the geodetic datums used.

• GPS system uses WGS84 and GLONASS PZ90, therefore must transform from one system into the other.

• Typically a 7-parameter Helmert transformation is used to convert GLONASS datum into the GPS datum.
 - There is no globally accepted set of transformation parameters.
 - Receiver manufacturers use different parameters.
 - Must be accounted so as not to degrade the position solution.

• While it is relatively easy to transform geodetic datums, the other issues that must be accounted for is the actual accuracy of the geodetic datums themselves.
 - This could potentially degrade the position solution.
 - GLONASS recently updated its datum to PZ90.2 resulting in better orbit accuracy.
Performance

- At present, GLONASS is used as an augmentation to the GPS system to provide better redundancy.
- Results show that the utilising the GLONASS system does not degrade the position solution.
- With the launch of more GLONASS satellites it should be possible to calculate a GLONASS only solution (can be done today but coverage limited).
Performance

GPS-only
Horizontal (blue) & Vertical (red) Residual

GPS+GLONASS
Horizontal (blue) & Vertical (red) Residual
Implications for DP Positioning

• GNSS will remain as one of the principal references used within a DP system
 – Changes within the SatNav will help meet the future needs of offshore community

• The advantages that the changes in the satellite navigation will bring are:
 – Better availability due to increased number of satellites and signals
 – Multiple signals at different frequencies should help make the solution more resilient to interference
 – Potential to use each system independently or in a combined solution

• The disadvantages of GNSS
 – Perceived to be a consumer technology – cheap, infallible providing positioning anytime and is always correct
Integration into DP Systems

• Selection of the most appropriate positioning system for the vessel to meet operational or class requirements

• What information should be made available to the DP system?
 – Important when there is the potential for different solutions to be made up of different signals and constellation
 – Ability to weight solutions appropriately within DP system which will need additional information about the position solution (e.g. co-variance matrix)
 – Standardised interface to ease integration

• What about future systems such as INS and how will GNSS integrate with that technology?
 – Who will be responsible for the integration
 – There is a requirement for a standard protocol or interface to exchange data
Certification

• In the future the certification of positioning reference systems will become more prominent
 – Will there be a requirement for certifying all position references feeding the DP?
 – Certification process must be able to handle the advances in technology
 – What about the integration of other sensors (e.g. INS)
 – Who will be responsible for attaining certification

• Presently, the principal certification required for positioning systems feeding a DP system is Type Approval for IEC60945

• The other standard that covers positioning systems is the Marine Equipment Directive (MED)
 – Designed to enhance safety at sea
 – Driven by a number of specific resolutions issued by IMO
Certification - MED

• Some Notified Bodies request that the position references feeding into a DP system must meet MED

• If only the vessel approved SOLAS approved GNSS receiver is used to ensure safe passage of the vessel then;

• The service and equipment used as a position reference for the DP system is understood to fall outside the jurisdiction of the IMO regulations and hence outside MED
 – Need further discussion with Notified Bodies
Conclusions

• Whatever the challenges ahead, the landscape of satellite navigation is going to change
 – Will help meet the future requirements of the industry
 – Will improve on what we currently have
 – New possibilities including the integration with other sensors and derivation of new solutions

• Need the industry to work together to develop standard interfaces and protocols to maximise the benefits of all these new developments