

**Operations II** 

#### **Case Study of DP Vessels Performing SIMOPS**

**Xiaobing Shi** 

**Diego Martinez** 

**Doug Phillips** 

American Global Maritime, Inc

Return to Session Directory

#### Case Study of DP Vessels Performing SIMOPS



#### Xiaobing Shi, Diego Martinez, Doug Phillips





## **Objectives**

- Section The Collision risks associated with SIMOPS.
- Classify the risk of collision.
- Identify areas that should be improved.
- Sum Provide mitigation and contingency plans if the collision risk level is not acceptable.



**Field Layout Main Items** A permanently Moored Semisubmersible ₩3 DP Vessels. Vessel A: Class 3 >100,000 tons Vessel B: Class 2 >100,000 tons >10,000 tons Vessel C: Class 3 ₩3 Drill Centers Subsea Structures Sloping Seabed





# Types of Disconnect Incidents

- Total Blackout
- Partial Blackout resulting in Insufficient Thrust
- Incorrect Thrust Commands

Mainte Street St

- Operator Error
- DP Control Failure
- Position Reference "Freeze" or Poor Information Accepted





#### Scenarios for Vessel and Subsea Structure Collisions

| V | essel | ssel Structure      |              | Distance (m) | Direction | Duration (d) |
|---|-------|---------------------|--------------|--------------|-----------|--------------|
|   | А     | Test Flowline       | Drift<br>Off | 150          | Е         | 60           |
|   | А     | Umbilicals          | Drift<br>Off | 150          | S         | 60           |
|   | A     | Sea Bed             | Drift<br>Off | 500          | Ν         | 60           |
|   | A     | Mooring Line        | Drift<br>Off | 4000         | SE        | 60           |
|   | A     | Mooring Line Center | Drift<br>Off | 5000         | SE        | 60           |
|   | A     | Export pipeline     | Drift off    | 2500         | E         | 60           |



#### **DP Incident Probabilities**

#### **P** of Annual Occurrence





## Probability of Non-Recovery (Drift-Off)



Non-Recovery Rate (%)





#### Metocean Criteria

Typically 1-yr Normal Operating Storm Condition for GoM

| Hs (m)        | 4   |
|---------------|-----|
| Tp (sec)      | 9   |
| Wind (kts)    | 47  |
| Current (m/s) | 0.9 |

Wave scatter diagram





## **Event Sequence Probabilities**

Apply DP incident probability, e.g. P(drift off) of 0.1283/yr.

Sector P (Weather Direction).

Derive probability of non-recovery within time it takes the vessel to cover distance to collision P(non-recovery)

Sector Combine the derived probabilities to give an estimate of the collision risk for a particular scenario.

**Absorbed Kinetic Energy** 

$$KE_{a} = 0.5 \frac{M_{1}M_{2}}{M_{1} + M_{2}} V_{2}^{2}$$

 $M_1$  is the mass of the static vessel.  $M_2$ and  $V_2$  are the mass and impact velocity of the rogue vessel



## **Risk Criteria**

| Category | Probability /Frequency    | Consequence       |
|----------|---------------------------|-------------------|
| Low      | Return period > 10,000 yr | Cost< \$100,000   |
|          |                           | Energy < 15 MJ    |
|          |                           |                   |
| Medium   | Return period> 1,000 yr.  | Cost< \$2 million |
|          |                           | Energy<100 MJ.    |
| High     | Return period <1,000 yr   | Cost>\$2 million  |
|          |                           | Energy > 100 MJ   |



#### **Risk Definition Matrix**

| Frequency | X Consequence | =Risk |
|-----------|---------------|-------|
| L         | L             | L     |
| L         | Μ             | L     |
| L         | Н             | М     |
| Μ         | L             | L     |
| Μ         | Μ             | М     |
| Μ         | Н             | Н     |
| Н         | L             | М     |
| Н         | Μ             | Н     |
| Н         | Н             | Н     |

MTS DP CONFERENCE



#### Proximity Risk for Vessel Collisions

| Rank | Vessels |        | Failure      | Dis-<br>tance | Proba-   | Impact<br>Energy | Risk |
|------|---------|--------|--------------|---------------|----------|------------------|------|
|      | Rogue   | Static | Туре         | (m)           | Dinty    | (MJ)             |      |
| 1    | А       | Semi   | Drift<br>Off | 30            | 6.61E-03 | 20.47            | Н    |
| 2    | С       | Semi   | Drift<br>Off | 30            | 8.14E-03 | 12.83            | М    |
| 3    | С       | В      | Drift<br>Off | 30            | 8.14E-03 | 12.54            | М    |
| 4    | В       | С      | Drift<br>Off | 30            | 6.72E-03 | 9.96             | М    |
| 5    | В       | Semi   | Drift<br>Off | 3000          | 2.01E-05 | 353.12           | М    |
| 6    | А       | В      | Drift<br>Off | 3000          | 1.34E-05 | 159.62           | М    |
| 7    | В       | А      | Drift<br>Off | 3000          | 1.32E-05 | 314.07           | М    |
| 8    | С       | Semi   | Drive<br>Off | 30            | 7.29E-04 | 13.87            | L    |
| 9    | С       | В      | Drive<br>Off | 30            | 7.29E-04 | 13.55            | L    |
| 10   | С       | Semi   | Drift<br>Off | 5000          | 1.10E-05 | 49.78            | L    |



# Vessel and Subsea Structure Collision Risks

| Vessel | Structure              | Failure<br>Type | Distance (m) | Probability<br>Of<br>Collision<br>(P) | Return<br>period in<br>years<br>(1/P) |
|--------|------------------------|-----------------|--------------|---------------------------------------|---------------------------------------|
| А      | Test Flowline          | Drift<br>Off    | 150          | 1.2E-03                               | 8E+02                                 |
| А      | Umbilicals             | Drift<br>Off    | 150          | 9.1E-04                               | 1E+03                                 |
| А      | Sea Bed                | Drift<br>Off    | 500          | 6.1E-05                               | 2E+04                                 |
| А      | Mooring Line           | Drift<br>Off    | 4000         | 2.2E-05                               | 5E+04                                 |
| А      | Mooring Line<br>Center | Drift<br>Off    | 5000         | 2.2E-05                               | 5E+04                                 |
| А      | Export<br>pipeline     | Drift off       | 2500         | 1.8E-05                               | 6E+04                                 |



# Mitigation Plans

| Mitigation              | Notes                                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|
| Safety Anchor           | May make DP unstable and may present a hazard in itself.                                                           |
| Safety Boat             | Have a quick connect system.<br>Could be another collision hazard and<br>connecting in an emergency can be fraught |
| Drift Off<br>Analysis   | Predict the trajectory for existing or forecast conditions                                                         |
| Consequence<br>Analysis | Warns the operator of the worst case failure                                                                       |



# Mitigation Plans (Cont'd)

| Well-Specific Operational<br>Guidelines for Planning | Specific for each location with contingency plans                              |
|------------------------------------------------------|--------------------------------------------------------------------------------|
| Riser height                                         | Develop means of raising riser<br>when it disconnects                          |
| Collision avoidance<br>Radar                         | Possibly over lay of field and obstructions-should be on a UPS                 |
| Inter Vessel<br>Communication                        | Set up independent command channel. Test regularly                             |
| Minimize exposure time                               | Run riser in safe position then<br>move over location, use of dual<br>derricks |



# **SIMOPS Risk Simulator**

The software solution of the simulator is a program targeted at a modern desktop PC running Microsoft Windows operating system.

The near real time risk simulator can carry out risk calculation in an interactive manner.

This tool will be of most use of vessels performing SIMOPS in close proximity e.g. within 300m.

It can work as a mitigation tool, and it is also suitable for training and demonstration purposes.



#### **Example of Interface Layout**





# Example of Drift Time Display



# Conclusions

- The close proximity SIMOPS, account for the highest risks.
- Most of SIMOPS occur at large distance, which will reduces the probability of collision, but when the DP vessels are massive the resulting impacting energies are very large and the consequences shouldn't be overlooked.

Generally, risk level caused by DP vessel drive off is low, since the drive-off vessel can be recovered within two minutes.

#### Case Study of DP Vessels Performing SIMOPS



#### Xiaobing Shi, Diego Martinez, Doug Phillips

