Floating Production System Deepwater Development Options

by

Pieter Wybro

Sea Engineering, Inc.
Presentation Topics

1. Deepwater Platform Options
2. Market Trends
3. Primary Drivers
4. Technology Issues
5. Future Trends
Local Host Development Option
Satellite Wellhead Platforms to Central Hub

MTS Field Development Workshop Houston September 28-30, 2004
Production Floater Hull Types

- Monohull

FPSO - Production, Storage, and Shuttle Offtake
FSO - Storage and Shuttle Offtake
FPU - Production and Pipeline Offtake
Production Floater Hull Types

- Monohull
- Semi-Submersibles

Conversions

New Generation New Build
Deepwater Floater Hull Types

- Monohull
- Semi-Submersibles
- Spars

Classic Spar Truss Spar
Deepwater Floater Hull Types

- **Monohull**
- **Semi-Submersibles**
- **Spars**
- **Tension Leg Platforms (TLP)**

Classical TLP

Monocolumn TLP

Moses TLP
Floating Production Systems Growth

- Mature Technology.
- Historically has been primarily conversions.
- Historically, FPS were used in medium water depth, early production, short field life, flexible risers.

Reference: International Maritime Consultants 2004
GOM Floating Systems

(Source: MMS Deepwater GOM Report 2004)
Recent Exploration Trends
(Source: MMS Deepwater GOM Report 2004)

Ultra-deep water Trend

MTS Field Development Workshop Houston September 28-30, 2004
GOM Discoveries > 7000’ WD

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Block</th>
<th>WD, ft</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aconcagua</td>
<td>MC 305</td>
<td>7,379</td>
<td>1999</td>
</tr>
<tr>
<td>Camden Hills</td>
<td>MC 348</td>
<td>7,530</td>
<td>1999</td>
</tr>
<tr>
<td>Blind Faith</td>
<td>MC 696</td>
<td>7,116</td>
<td>2001</td>
</tr>
<tr>
<td>Merganser</td>
<td>AT 37</td>
<td>8,064</td>
<td>2001</td>
</tr>
<tr>
<td>St. Malo</td>
<td>WR 678</td>
<td>7,326</td>
<td>2001</td>
</tr>
<tr>
<td>Trident</td>
<td>AC 903</td>
<td>9,816</td>
<td>2001</td>
</tr>
<tr>
<td>Cascade</td>
<td>WR 206</td>
<td>8,143</td>
<td>2002</td>
</tr>
<tr>
<td>Great White</td>
<td>AC 857</td>
<td>7,425</td>
<td>2002</td>
</tr>
<tr>
<td>Vortex</td>
<td>AT 261</td>
<td>8,422</td>
<td>2002</td>
</tr>
<tr>
<td>Atlas</td>
<td>LL 50</td>
<td>9,180</td>
<td>2003</td>
</tr>
<tr>
<td>Chinook</td>
<td>WR 469</td>
<td>9,104</td>
<td>2003</td>
</tr>
<tr>
<td>Jubilee</td>
<td>AT 349</td>
<td>8,891</td>
<td>2003</td>
</tr>
<tr>
<td>Spiderman/Amazon</td>
<td>DC 621</td>
<td>8,100</td>
<td>2003</td>
</tr>
</tbody>
</table>

(Source: MMS Deepwater GOM Report 2004)
Primary Drivers for Deepwater FPUs

- Waterdepth.
- Payload
- Production Characteristics – Well Access Requirements.
- Availability of Infrastructure & Market location.
- Platform drilling, predrilling vs postdrilling
- Gas Disposal Requirements.
- Local Content Requirements.
- Field Life.
- Metocean Conditions.
Wellbore Access: Direct vs Subsea?

Direct (Dry Tree)
- Single Drill Center
- Lower OPEX and Life Cycle Costs
- Simpler well Hardware
- Minimize well intervention Cost and downtime
- Less Flow Assurance Risk
- Higher recovery
- Strict motion requirements

Indirect (Wet Tree)
- Multi Drill Centers
- Higher OPEX
- Minimize Drilling Costs and Risks for Large Areal Extent Reservoirs
- Maximize Development Plan Flexibility
- Capability for wide range of hull types
- More complex flow assurance issues
- Seafloor intervention, vessel availability
Proven Deepwater Technology

Dry Tree Solutions
- Classic Spar
- Truss Spar
- Compliant Tower

Wet Tree Solutions
- Shipshape FPSO
- Semi FPS

Source: Offshore Magazine
Deepwater Production Solutions poster; Sept., 2000
Riser Options

Direct Vertical Access Options:
- Direct Tensioned Riser
- Air Can Tensioned Riser \(\{ \text{TTR} \) TTR
- Tubing Tie-back Riser
- Compliant Vertical Access Riser (CVAR)*
- Near or At-Surface Completion*
- Drilling/Completion/WO riser

Wet Tree Options:
- Steel Catenary Risers (SCR)
- Hybrid Risers
- Flexible Catenary Risers

Strict Hull Motion Requirements

Note: * Option is unproven

MTS Field Development Workshop Houston September 28-30, 2004
Motion Response Characteristics

Sea Energy

5 Seconds

Wave Period (Seconds)

20 Seconds

MTS Field Development Workshop Houston September 28-30, 2004
Moorings Options

Mooring Leg Options:
- Catenary leg moorings
- Semi-taut leg moorings
- Taut leg polyester mooring

Foundation Options:
- Steel Driven Piles
- Suction Piles
- SEPLA
- VLA
- Drag Embedment

MTS Field Development Workshop
Houston September 28-30, 2004
Installed & Sanctioned FPSOs

Water Depths > 300 m

Source: Aker Maritime’s & Mustang Engineering 2001 Worldwide Survey of FPSOs; Aug, 2001 Issue of Offshore Magazine
Monohull Mooring Types

- Internal Turret
- External Turret
- Yoke System
- Spread moored
Monohull Mooring Types

- Internal Turret
- External Turret
- Yoke System
- Spread moored
Monohull Mooring Types

- Internal Turret
- External Turret
- Yoke System
- Spread moored

- Old style
- Not Applicable to deep water
Monohull Mooring Types

- Internal Turret
- External Turret
- Yoke System
- Spread moored

- Directional environment
- Offtake issues
Offtake
FPSO

- no oil export pipeline required
- Converted tankers, if used, can lower initial cost & schedule
- Available payload & deck area

- Oil field use only (no advantage for gas field)
- Wet Tree – no direct well access
- Potentially high cost for well workover
- High turret/fluid swivel cost potential
Worldwide Installed & Sanctioned Semi-FPSs
Water Depths > 300 m

- Brazil (13)
- Norway (7)
- US GoM (5)
- China (1)
Semisubmersible FPU

- Hull steel weight equivalent to a TLP
- Deck can be pre-integrated inshore
- Installed with anchor handling vessels
- Hull motions generally acceptable for SCR risers.

CP Semi – New Generation Semi
Semisubmersibles

- Low structure weight
- Catenary or Taut-Leg Spread moored
- Good motions, SCRs are possible
- Platform drilling or workover rig is possible
- Subsea trees with vertical access

- DVA risers w/dry trees unproven
- Large mooring footprint
- Pipeline offtake
Installed & Sanctioned SPARs
Water Depths > 300 m

MTS Field Development Workshop Houston September 28-30, 2004
Air Can Risers

SPAR Production Riser System
Spars

- Dry tree capable
- Low heave motions
- Catenary or taut leg moorings
- Low sensitivity to topsides weight
- Large structure weight
- Large seabed footprint
- Large lateral motions at deck and keel
- Hull VIM may cause fatigue of components (aircan, riser, mooring etc.)
Installed & Sanctioned TLPs
Water Depths > 300 m
Classic TLPs

TLWP

Concrete

PDQ
MOSES New Generation TLP

Marco Polo TLP in 4300 ft Waterdepth

MTS Field Development Workshop Houston September 28-30, 2004
Steel Tendon Practical Depth Limits

Classic TLP

Water Depth (ft)

Payload (st), excludes deck steel, includes risers

SE Asia
W Africa
GoM
Steel Tendon Practical Depth Limits

New Generation TLP

Payload (st), excludes deck steel, includes risers
Integrated TLP Tow out
Direct Tensioned Risers

MTS Field Development Workshop Houston September 28-30, 2004
Tension Leg Platform

- Stable with minimal heave, roll and pitch motions
- Dry Tree capable
- Small seabed footprint
- Scalable to small fields
- Low structure weight
- Inshore integration

- No oil storage
- Sensitive to topsides weight
- Has water depth limit with steel tendons
Global Design Efficiency

Payload Excludes Deck steel and product storage

Displacement/Payload

Conventional TLP
Seastar TLP
Moses TLP
Conventional Semi
Spar
Unocal TLP
CP Semi

MTS Field Development Workshop Houston September 28-30, 2004
Deepwater System Comparisons

SPAR
- Hull design less depth sensitive
- Riser air cans are weight sensitive
- Lower Payload Sensitivity of hull
- Simpler mooring system
- Simpler hull construction

TLP
- Simpler risers
- Less motions
- Lower Hull Weight
- Small seabed footprint
- Topsides can be integrated inshore

MTS Field Development Workshop Houston September 28-30, 2004
Deepwater System Comparisons

<table>
<thead>
<tr>
<th>FPSO</th>
<th>Semi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used in area lacking pipeline infrastructure</td>
<td>Used in areas with accessible infrastructure</td>
</tr>
<tr>
<td>Oil storage and offtake capability</td>
<td>SCR Risers feasible</td>
</tr>
<tr>
<td>Gas handling and offtake is an issue.</td>
<td>Efficient hull weight</td>
</tr>
<tr>
<td>SCR Risers are generally not feasible</td>
<td>Simpler Mooring system</td>
</tr>
</tbody>
</table>
Technical and Commercial Maturity

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>TECHNICALLY MATURE</th>
<th>COMMERCIALY MATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPSO</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Spar - Classic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Spar - Truss</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Semi FPS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DD Semi</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TLP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Deepwater FPU Design Challenges

- Efficient Hulls with good performance
- Reducing Installation costs & risks
- Deepwater mooring designs
- DVA riser designs
- Deep currents & VIV of risers and tendons
- Reduce drilling costs
- Non-linear hydrodynamics – VIM, run up, free surface effects, higher order loads
- Model Testing scale effects and mooring truncation effects
Emerging Deepwater Production Solutions

- FDPSOs
- Deep Draft Semisubmersibles
- Floating LNG
FPU Technology Direction

- Ultra-deep water
- New Generation efficient hulls
- Improved lightweight topsides
- Tender Assisted Drilling (TAD)
- Improved moorings and foundations
- Improved risers
- More efficient platform installation methods
New Generation Hulls + Lightweight Topsides

Dry Tree TLPs in GoM

- Brun - Powell
- Jolliet
- Marlin
- Matterhorn
- Typhoon
- NaKika
- Prince
- Marco Polo

Hull + Deck Steel, tons

Design Throughput, KBOEPD

MTS Field Development Workshop Houston September 28-30, 2004
Summary

- SPARS, proven to 6000’ and TLPs, proven to 5000’ dominate deepwater in GOM.
- SPAR w/dry trees can be extended to 10,000 ft water depth; riser and mooring systems are a challenge.
- Semis and FPSO w/wet trees can be extended to 10,000 ft water depth; mooring system is a challenge.
- Development of emerging tendon technology is required to extend TLP beyond 7500 ft water depth.
- Costs and schedule for deepwater floating systems are market driven.
- “Best System” dependent on water depth, field size, existing infrastructure, market conditions, and reservoir characteristics.