DP Conference MTS Symposium

Flow Assurance

Elijah Kempton
Tommy Golczynski

Marine Technology Society
September 30, 2004
Session Outline

• **Flow Assurance Overview**
 • Key Flow Assurance Issues
 • Wax
 • Hydrates
 • Slugging
 • Deepwater Impacts on Flow Assurance
 • Emerging Technologies

• **Design Considerations**
 • Black Oil Systems
 • Gas Condensate Systems
Flow Assurance Overview
What is Flow Assurance?

• Analysis of the entire production system to ensure that the produced fluids continue to flow throughout the life of the field.

• Optimization of the design and operating procedures to cost effectively prevent or mitigate slugging, surge volumes, wax deposition, gelling, hydrates, asphaltenes, etc.
Key Flow Assurance Issues

• Wax (Paraffin) – What is it?
 • A solid hydrocarbon which precipitates from a produced fluid
 • Forms when the fluid temperature drops below the Wax Appearance Temperature (WAT)
 • Melts at elevated temperatures (20°F+ above the WAT)
 • Rate of deposition can be predicted for pigging frequency
Key Flow Assurance Issues

• Wax
 • Since 1996, there have been 51 major occurrences that the MMS had to be involved in
 • All were paraffin-related
 • Means of remediation
 • Pigging
 • Continuous inhibition (150-250 ppm for Gulf of Mexico)
 ▪ Reduced wax deposition rate by 60-90%
 • Industry Technology
 • Modeling is overly-conservative (6X pigging frequency)
Key Flow Assurance Issues

Example WAT Measurement

Above WAT

Wax Crystals (WAT)

Seabed Temp. (40°F)
Key Flow Assurance Issues

• Factors effecting wax deposition rate
 • Wax Appearance Temperature, WAT
 • Production Fluid Temperature
 • Flowline U-value
 • Fluid Properties
 ▪ Viscosity
 ▪ N-Paraffin Content
Key Flow Assurance Issues

• Wax Deposition – Insulation Impact
Key Flow Assurance Issues

Hydrate – What is it?
- An Ice-like solid that forms when:
 - Sufficient water is present
 - Hydrate former (i.e., methane) is present
 - Right combination of Pressure and Temperature (High Pressure / Low Temperature)

Molecular Structure of Hydrate Crystal
Key Flow Assurance Issues

• Hydrates
 • Primary cause for insulated flowlines
 • Deepwater operations
 • Increased operating pressure
 • Cold ambient temperatures
• Means of remediation
 • Crude oil displacement (looped flowlines)
 • Depressurization
 • Coiled tubing
 • Continuous Inhibition (Prevention Only)
 ▪ Methanol/MEG
 ▪ LDHI
Key Flow Assurance Issues

- Hydrates – Base Information
Key Flow Assurance Issues

- Hydrates – Base Information
Key Flow Assurance Issues

• Slugging – What is it?
 • Periods of Low Flow Followed by Periods of High Flow
 • Occurs in Multiphase Flowlines at Low Gas Velocities
Key Flow Assurance Issues

- Slugging
 - Causes
 - Low fluid velocity
 - Bigger ≠ Better
 - Seabed bathymetry (downsloping)
 - Riser type
 - “Lazy-S” is a slug generator
 - Means of prevention
 - Increase flowrate
 - Separator pressure
 - Gas lift

<table>
<thead>
<tr>
<th>Gas Lift Overview</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proven Technology</td>
<td>Erosion Concerns</td>
</tr>
<tr>
<td></td>
<td>Relative Inexpensive</td>
<td>Lower Temperatures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficult with Catenary Risers</td>
</tr>
</tbody>
</table>
Key Flow Assurance Issues

• Slugging – Gas Lift Impacts
Key Flow Assurance Issues

Other Issues
- Asphaltenes
- Scale
- C-Factors
- Surge Volume
- Erosion
- Depressurization
- Pigging
- Chemical Inventory
- Pour Point
- Corrosion
- Emulsions
- Cooldown Times
- Sand
- Liquids Management
- Flare Capacity
Deepwater Impacts on Flow Assurance

- **Hydrate Formation/Wax Deposition**
 - Leads to:
 - Insulation / dual flowlines
 - Dry oil flushing
 - Active heating
 - Chemicals
 - Revamped operating strategies

- **Lack of pressure / need for boosting**
 - Deepwater + high water cut + long tiebacks
 - Riser base gas lift
 - Multiphase pumping
 - Subsea separation
Deepwater: Temperature Losses

- Potential Energy Losses
 - Gas does “work” in moving fluids
 - Function of water depth
- Expansion Cooling (Joule-Thomson Effect)
 - Exacerbated at large pressure differentials
- RISER DOMINATES DEEPWATER SYSTEMS
 - Insulation may not be the answer!
Deepwater: Temperature Losses

- **Joule-Thomson Cooling**: 46%
- **Surroundings (U-Value)**: 6%
- **Potential Energy (Work)**: 48%

Temperature (°F)
- **FLOWLINE**
- **WELLHEAD**
- **RISER**
- **TOPSIDES**
- **RISER BASE**
Deepwater: Temperature Losses

<table>
<thead>
<tr>
<th>Flowline Length (miles)</th>
<th>Temperature Drop (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flowline</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>2.9</td>
</tr>
<tr>
<td>15</td>
<td>9.2</td>
</tr>
</tbody>
</table>
Deepwater: Temperature Losses

- Heat transfer coefficient (U-value) dictates steady state temperatures
 - Q (heat loss) = $U \cdot A \cdot \Delta T$
 - U-Value ↓, Q ↓ … T ↑

- Thermal mass (ρ, C_p) impacts transient performance
 - Measure of heat storage
 - Prolongs cooldown times
 - Prolongs warm-up times
Transient Temperature Loss

- **HIGH (Gelled Fluid #2 – Water Base)**
- **MEDIUM (Gelled Fluid #1 – Oil Base)**
- **LOW (Nitrogen)**
Deepwater: Pressure Losses

- WELLHEAD
- FLOWLINE
- RISER
- RISER BASE
- TOPSIDES
Deepwater: Pressure Losses

<table>
<thead>
<tr>
<th>Flowline Length (miles)</th>
<th>Pressure Drop (psia)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flowline</td>
</tr>
<tr>
<td>3</td>
<td>143</td>
</tr>
<tr>
<td>6</td>
<td>238</td>
</tr>
<tr>
<td>15</td>
<td>405</td>
</tr>
</tbody>
</table>
Deepwater: Dry Trees vs. Subsea Tieback

- Dry trees preferred for accessibility
- Dry trees more difficult for flow assurance
 - Typically cannot depressurize
 - Short cooldown times (2-8 hours)
 - Fewer insulation/heating options than subsea
 - Limited chemical (MeOH/MEG) deliverability
 - Wax deposition more difficult to remediate
Dry Tree Analysis: Cooldown Comparison

Production Fluid Temperature

- Solid - Conduction
- Liquid - Conduction + Convection
- Gas - Conduction + Convection + Radiation

Dry Tree: Conduction / Convection / Radiation

HYDRATE FORMATION TEMPERATURE
Dry Tree: Concentric vs. Non-Concentric

• Accommodate Auxiliary Lines?

• Heat Transfer: \[Q = k \cdot A \cdot \Delta T / L \] (Conduction Only)
Dry Tree: Concentric vs. Non-Concentric

Concentric (0.1 BTU/hr-ft -°F)

Non-Concentric (1.0° Offset)
Dry Tree: Gas Properties

Temperature (°F) vs. Time (Hours)

- 15 psia N2
- 30 psia N2
- 59 psia N2
- 102 psia N2

Dry Tree:

Gas Properties
Design for Expansion

- Transient issues drive deepwater design
 - Cooldown / restart - **Hydrates**
- Typical deepwater practice
 - Dual flowlines / crude oil displacement
 - Typically cannot depressurize (oil systems)
- **Consider potential for future expansion**
 - Insulation
 - Topsides facilities
Design for Expansion

Total Time to Displace Existing System = 22 Hours (Sequential)
Total Time to Displace Integrated System = 45 Hours (Sequential)

High Level Insulation, or Additional Topsides Facilities Required!
Emerging Technologies

- Artificial Lift
 - Subsea Separation (-)
 - Multiphase Pumping (+)
 - Gas Lift (+ / -)
- Passive Insulation Solutions
 - Microporous Insulation
 - Phase Change Materials
Emerging Technologies

• Active Heating
 • Hot Water Circulation
 • Electrically Heated
 • “Electrically-heated ready”

• Chemicals
 • Low Dosage Hydrate Inhibitors
 • “Cold Flow”
Design Considerations: Black Oil and Gas Condensate Systems
Black Oil System: Steady State Design Checklist

- **Hydraulics**
 - Line sizing
 - Dry tree vs. subsea tieback
 - Single vs. dual flowlines
 - **Dual flowlines becoming “standard” for deepwater**
 - Pressure drop
 - Velocity / erosion (minimum / maximum)
 - Slugging

- **Thermal**
 - Insulation requirements
 - Hydrate formation
 - Wax deposition
 - Gel formation
Black Oil System: Transient Design Checklist

- Shutdown
 - Planned
 - Unplanned
- Depressurization
- Restart
 - Warm
 - Cold
- Fluid displacement / pigging
- Flowline preheating
Black Oil Systems:
Steady State Design Considerations
Black Oil System: Steady State Hydraulics

- Pressure drop effects
 - Physical
 - Line size
 - Tieback distance
 - Water depth
 - Multiphase flow:
 - Head losses <> head gains
 - Pipe roughness (typical values)
 - Steel: 0.0018”
 - Tubing: 0.0006”
 - Flexible pipe: ID/250

- Fluid properties
 - Gas/oil ratio (GOR)
 - Density
 - Viscosity
 - May require insulation to limit viscosity
Black Oil System: Slugging

- Hydrodynamic
 - High frequency
 - Minimal facilities impact

- Terrain
 - High liquid / gas flowrates
 - Topsides concern
 - Riser fatigue concern
 - Utilize gas lift
Black Oil System: Slugging

- Slugging issues
 - Sensitivity to Fluid GOR / water cut

<table>
<thead>
<tr>
<th>Water Cut (%)</th>
<th>Terrain Slugging Regime (BPD) / Surge Volume (BBL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>760 GOR</td>
</tr>
<tr>
<td>0</td>
<td>15000 / 150</td>
</tr>
<tr>
<td>20</td>
<td>20000 / 160</td>
</tr>
<tr>
<td>40</td>
<td>24000 / 175</td>
</tr>
<tr>
<td>60</td>
<td>26000 / 325</td>
</tr>
<tr>
<td>80</td>
<td>DNF</td>
</tr>
</tbody>
</table>
Black Oil System: Slugging

- Slugging issues
 - Sensitivity to Trajectory: up vs. downslope

![Graph showing slugging issues](image-url)
Black Oil System: Steady State Thermal Design

- Hydrates
 - Maintain steady state temperature above hydrate formation region, down to “reasonable” flowrate
 - Looped flowline ~ 25% of field production (50% per flowline)
 - For low water-cut systems, continuous hydrate inhibition is possible
 - Future: continuous LDHI inhibition
Black Oil System: Steady State Thermal Design

- Wax
 - Maintain temperature above WAT (stock tank), down to “reasonable” flowrate
 - Looped flowline ~ 25% of field production (50% per flowline)
 - Maintain viscosity at acceptable levels to reduce pressure drop
 - Insulate to minimize pigging frequency
 - Pigging frequency > residence time
 - Continuous paraffin inhibition (if necessary)
Black Oil System:
Steady State Thermal Design

<table>
<thead>
<tr>
<th>Insulation Option</th>
<th>Achievable U-value (BTU/hr-ft²-°F)</th>
<th>Issue / Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible</td>
<td>0.75 – 1.50</td>
<td>• Limited insulating capacity</td>
</tr>
<tr>
<td>Wet (Syntactic)</td>
<td>0.50 – 0.75</td>
<td>• Buoyancy issues</td>
</tr>
<tr>
<td>Burial</td>
<td>0.50 – 1.00</td>
<td>• Dependant on soil properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Combined with insulation</td>
</tr>
<tr>
<td>Pipe-in-pipe</td>
<td>0.20 – 0.25</td>
<td>• Riser installation difficulties</td>
</tr>
<tr>
<td>Micro-porous</td>
<td>0.08 – 0.10</td>
<td>• Industry acceptance</td>
</tr>
</tbody>
</table>
Black Oil System: Steady State Thermal Design

Arrival Temperature
Water Cut = 0%

Liquid Flowrate (blpd)

Arrival temperature (°C)

- Adiabatic (0 BTU/ft² hr °F)
- 0.09 BTU/ft² hr °F
- 0.20 BTU/ft² hr
- 0.30 BTU/ft² hr °F
- 0.50 BTU/ft² hr °F
Black Oil Systems: Cooldown Design Considerations
Black Oil System: Cooldown

• Shutdown statistics
 • Typical shutdown durations
 • 89% shutdowns < 10 hours
 • 94% shutdowns < 12 hours
 • 99.9% shutdowns < 24 hours

• Typical shutdown causes

![Pie chart showing typical shutdown causes]
Black Oil System: Cooldown

- Planned shutdown Procedure
 - Inject hydrate inhibitor for one residence time (minimum)
 - At high water cuts, may need to reduce flowrate to effectively treat system
 - Inject hydrate inhibitor into subsea equipment
 - Particular attention to horizontal components
 - Self-draining manifold / jumpers
 - Treat upper portion of wellbore
 - SCSSV vs. top ~50 ft
 - Shut-in system
Black Oil System: Cooldown

- Unplanned shutdown Procedure
 - Determine minimum cooldown times
 - “No-Touch Time”
 - ~2-4 hours / no action taken subsea
 - “Light Touch Time”
 - ~2-4 hours / treat critical components
 - Time is a function of chemical injection philosophy / number of wells
 - “Preservation Time”
 - Time required to depressurize or displace flowlines with non-hydrate forming fluid

Time=0 Time=4 Time=8
“No-Touch” “Light Touch” “Preservation”
Black Oil System: Cooldown

- Insulation selection
 - Cooldown time determined by:
 - U-Value
 - Thermal mass (ρ, C_p)
 - Measure of heat storage
 - Line size impacts
 - Bigger = More Thermal Mass
 - Gas / liquid interface typically controlling point
 - Gas = low thermal mass
 - Highest pressure
 - Coldest temperature
Black Oil System: Cooldown

- RESERVOIR
- WELLHEAD
- FLOWLINE
- RISER

Graph shows pressure (psia) versus distance (miles) with two lines:

- Blue line: 0 hours (Steady State)
- Red line: 24 hours
Black Oil System: Cooldown

The graph represents the liquid holdup over distance for different time periods. The blue line represents the steady state condition at 0 hours, while the red line shows the condition after 24 hours. The graph is divided into sections labeled RESERVOIR, WELLHEAD, FLOWLINE, and RISER. The vertical axis represents the liquid holdup (-), and the horizontal axis shows the distance in miles.
Black Oil System: Cooldown

Hydrate Propensity, T-Thyd (°F)

Distance (miles)

RESERVOIR
WELLHEAD
FLOWLINE
RISER
Black Oil System: Cooldown Checklist

- Is there adequate chemical injection to treat subsea components within cooldown time?
 - Wellbore
 - Trees
 - Jumpers
 - Manifolds

- What is the subsea valve closure philosophy?
 - Packed: More liquid / higher pressures
 - Un-packed: Less liquid / lower pressures

- Does insulation provide sufficient cooldown time?
 - No-touch
 - Light-touch
 - Preservation

- Is gel formation a possibility?
 - **If yes, system design philosophy changes**

- Is SCSSV set deep enough to avoid hydrates?
Black Oil Systems: Depressurization Design Considerations
Black Oil System: Depressurization

- Hydrate remediation strategy
 - Reduce pressure below hydrate formation pressure at seabed
- Effectiveness based on:
 - Fluid properties
 - GOR
 - Water cut
 - Seabed bathymetry
 - Upslope
 - Downslope
- Deepwater issues
 - Reduce pressure to ~200 psia at seabed
 - Maintain pressure below hydrate conditions during restart

```
Time=0  Time=4  Time=8
```

```
“No-Touch”  “Light Touch”  “Preservation”:
Depressurization
```
Depressurization: Subsea Tieback

- **Pressure (psia)**
- **Distance (miles)**

- **BOTTOM HOLE**
- **FLOWLINE**
- **MUDLINE**
- **RISER BASE**

Graph showing the pressure drop over distance for different time intervals (0.0 hours, 0.5 hours, 1.0 hours).
Depressurization – Dry Tree

Distance (feet)

Pressure (psia)

BOTTOM HOLE

SCSSV

GAS/LIQUID INTERFACE

MUDLINE

0.0 hours
0.5 hours
1.0 hours
Black Oil System: Depressionization Checklist

- Can you depressurize below hydrate formation conditions?
 - If **YES**, can you depressurize in late-life at high water cuts?
 - If **YES**, can you maintain pressure below hydrate formation conditions during restart?
 - Difficult for deepwater
 - If **YES**, is there a pour point concern?
 - Depressurization increases restart pressure requirements
 - If **NO**, consider the following for hydrate prevention:
 - Displacement (dual flowlines)
 - Active heating
 - Continuous chemical inhibition
Black Oil Systems: Displacement Design Considerations
Black Oil System: Displacement Hydrate Prevention - Shutdown

- During “Prevention” time, displace produced fluids from flowline
 - Unable to get hydrate inhibitor to in-situ fluids during shutdown
 - Dual flowlines required
 - Sufficient insulation / cooldown time
 - Function of flowline length

Time=0 Time=4 Time=8

“No-Touch” “Light Touch” “Preservation”: Displacement
Black Oil System: Displacement
Discharge Pressure Required

HOLD BACKPRESSURE AT OUTLET
Black Oil System: Displacement
Hydrate Prevention - Shutdown

Dead Oil Flushing - Year 5
FPSO Pump Discharge Pressure
FPSO Arrival Pressure Controlled at 1500 psia

- Pig reaches base of first riser
- Produced fluids move up second riser
- Gas breaks through second riser
- Pig moves up second riser
Black Oil System: Displacement Hydrate Prevention - Shutdown

• During “Prevention” time, displace produced fluids from flowline
 • Topsides design considerations
 • Available backpressure
 • Circulation rate
 ▪ Limited by pig integrity
 ▪ Typically 3-5 ft/sec
 ▪ May be faster for “straight-pipe”
 • Storage volume
 • Circulation passes
 ▪ With pig: 1 residence time
 ▪ Without pig: 2-3 residence times for efficient water removal
Black Oil System: Displacement Hydrate Prevention – Dry Tree

• During shutdown, how quickly will fluids fall below SCSSV?
 • Very little work done with L/D ratios >100 (deepwater riser ~10000)
 • Field data shows oil/water separation ~ 70-80 ft/hr
• Bullhead / displace with non-hydrate forming chemical to SCSSV
 • Methanol/MEG (volume concerns)
 • Heavy diesel (high density, by-pass produced fluids)
 • Dead oil
 • Ability to bullhead a function of displacement rate
Black Oil System: Displacement Checklist

- Is there sufficient time to accomplish displacement operation?
 - Sufficient insulation / Cooldown time
- Is the topsides facility designed to accomplish displacement operation?
 - Pump capacity
 - Storage capacity
- Can system be restarted into crude-oil filled flowline?
 - Displace with gas?
 - High pour point fluids – what is the restart pressure required?
- For dry trees, is a proper fluid available for displacement?
Black Oil Systems: Restart Design Considerations
Black Oil System: Cold Restart

- System pressure < hydrate formation conditions throughout restart?
 - For deepwater, hydrostatic pressure in riser too high
 - Separator pressure: may need alternate start-up vessel

- Hydrate inhibition required until arrival temperature reaches “Safe Operating Temperature” (SOT)
 - Maintain hydrate inhibitor rate: Fluid completely inhibited
 - Reduce hydrate inhibitor rate: Fluid not completely inhibited to shut-in conditions

- SOT is minimum topsides temperature that provides sufficient cooldown time, in the event of an interrupted restart
Black Oil System: Cold Restart

![Graph showing the relationship between Shut-in Pressure (psia) and Methanol Dosage (BBL MeOH/BBL H2O) for different types of water: Pure Water, Sea Water, and Produced Water.]
Black Oil System: Cold Restart

Flowrate, BPD

Methanol, gpm

5% WATER

25% WATER

50% WATER

75% WATER
Black Oil System: Cold Restart

- Achievable restart rates determined by:
 - Shut-in conditions
 - Fluid GOR
 - Water cut
 - Hydrate inhibitor

- **“Rule of Thumb”:** Greater inhibitor injection rates result in lower overall inhibitor volumes used during restart
 - Small tiebacks: 5-10 gpm / well
 - Large deepwater: 25+ gpm / well

- Warm-up trends:
 - Wellbore: Very quick (<30 minutes)
 - Flowline: Function of flowrate / water cut / length / insulation
Black Oil System: Cold Restart
Black Oil System: Cold Restart

![Graph showing hydrate propensity at different time intervals. The x-axis represents time in hours, ranging from 0 to 35. The y-axis represents hydrate propensity in °C, ranging from -20 to 50. The graph includes data points at 0 hours, 1 hour, 2 hours, 3 hours, 4 hours, 8 hours, 9 hours, 10 hours, 11 hours, and 12 hours. Each interval is represented by a different line color or marker style.](image-url)
Cold Restart: Case Study
3 Mile Tieback – Warm-up Time

<table>
<thead>
<tr>
<th>Insulation Type</th>
<th>5000 STBPD</th>
<th>10000 STBPD</th>
<th>Max Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-porous</td>
<td>5.8</td>
<td>2.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Pipe-in-pipe</td>
<td>6.1</td>
<td>3.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Conventional</td>
<td>9.2</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Flexible</td>
<td>10.6</td>
<td>3.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Buried</td>
<td>> 24</td>
<td>8.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Cold Restart: Case Study
15 Mile Tieback – Warm-up Time

<table>
<thead>
<tr>
<th>Insulation Type</th>
<th>5000 STBPD</th>
<th>10000 STBPD</th>
<th>Max Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-porous</td>
<td>> 24</td>
<td>13.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Pipe-in-pipe</td>
<td>> 24</td>
<td>14.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Conventional</td>
<td>> 24</td>
<td>> 24</td>
<td>10.9</td>
</tr>
<tr>
<td>Flexible</td>
<td>> 24</td>
<td>> 24</td>
<td>12.3</td>
</tr>
<tr>
<td>Buried</td>
<td>> 24</td>
<td>> 24</td>
<td>> 24</td>
</tr>
</tbody>
</table>
Cold Restart: Case Study

15 Mile Tieback – MeOH Volume

<table>
<thead>
<tr>
<th>Insulation Type</th>
<th>5000 STBPD</th>
<th>10000 STBPD</th>
<th>Max Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-porous</td>
<td>> 850</td>
<td>798</td>
<td>772</td>
</tr>
<tr>
<td>Pipe-in-pipe</td>
<td>> 850</td>
<td>814</td>
<td>781</td>
</tr>
<tr>
<td>Conventional</td>
<td>> 850</td>
<td>> 1700</td>
<td>1074</td>
</tr>
<tr>
<td>Flexible</td>
<td>> 850</td>
<td>> 1700</td>
<td>1053</td>
</tr>
<tr>
<td>Buried</td>
<td>> 850</td>
<td>> 1700</td>
<td>> 2300</td>
</tr>
</tbody>
</table>
Black Oil System: Restart Checklist

- Is there sufficient hydrate inhibitor available?
 - Delivery rates
 - Storage volumes

- How will multiple wells be restarted?
 - Single well at max. rate
 - Multiple wells at reduced rate
 - Single flowline vs. dual flowline

- What is the minimum temperature required to achieve safe conditions?
 - Safe Operating Temperature (SOT)
Black Oil System: Summary of Design Considerations

- Hydraulics
 - Ensure Production Delivery Throughout Field Life
 - Minimize Slugging

- Wax Deposition
 - Minimize Wax Deposition (Insulation/Pigging/Chemicals)

- Hydrate Formation
 - Avoid Steady State Hydrate Formation
 - Optimize Cooldown Times (Insulation)
 - Prevent Transient Hydrate Formation (Depressurization/Displacement/Chemicals)
 - Minimize Inhibitor Consumption